活動報告

新着記事

カテゴリー

キーワード検索

2013.05/23 半導体領域の高分子材料

1980年頃に書かれた導電性高分子の教科書は、導電性高分子が夢の材料になっており、最も導電性が良好な高分子材料でも半導体領域の導電性であった。そして導電性高分子にするにはカーボンの添加が不可欠との説明がされていた。白川先生の論文が発表されてしばらくしてからの教科書である。

 

高分子の大半は絶縁体である。経済的に半導体領域の材料へ変性するには、今も昔もカーボンの添加が最も効率的である。しかし、この時パーコレーション転移の制御という材料技術が重要である。試行錯誤で半導体領域の材料を製造することができても安定な生産が難しい。

 

パーコレーション転移の概略説明は以前書いているので、ここでは特許を書くコツを幾つか公開する。ただこの説明も工夫しなければ、ここに書いたとたん、コツは分かったが、もう特許に書けない、ということになりかねない。ゆえに公知の範囲で記載し、特許になりそうなところは、文脈で理解して頂けるような書き方をする。奥歯にモノが挟まったような文章になるが---。

 

1.パーコレーションではクラスターが長くつながる確率が問題となる。この確率を100%にできる、あるいは0%に制御できる技術が特許になる。

 

2.パーコレーション転移で得られる導電性は、マトリックスの電気抵抗と粒子の電気抵抗で決まる。粒子の電気抵抗の制御方法とマトリックスの電気抵抗の制御方法はそれぞれ未知の方法が存在する。

 

3.マトリックスの電気抵抗は、カーボンを分散したときに不純物の影響で変化しているはずで、そこをうまく表現した特許は少ない。(ご相談頂ければ詳細説明いたします。)

 

4.粒子の抵抗は、表面処理や凝集状態で変化する。(ご相談頂ければ詳細説明いたします。)

 

5.高分子中にカーボンを分散する方法は、混練技術になるが、混練手段によりクラスターのでき方が異なる。この定量化は難しい。

 

6.傾斜組成の場合と均一分散の場合では、体積固有抵抗と表面比抵抗の関係が崩れる。インピーダンスも変化する。このあたりの関係について論文は少ない。

 

7.パーコレーションは粒子の分散以外にも界面活性剤の分散や、導電性高分子の添加でも観察される。

 

8.PEGは面白い添加剤である。

カテゴリー : 電気/電子材料 高分子

pagetop