活動報告

新着記事

カテゴリー

キーワード検索

2020.10/12 無料セミナー

来週開催予定の無料セミナーについて。高分子の難燃化セミナーでは、概論を簡単に説明し、データ駆動型実験により難燃剤無添加で開発されたUL94-V2合格環境対応樹脂について解説予定である。

 

マテアリアルインフォマティクスが最近流行している。AIを使って材料開発、というといかにも今時の手法に見えるが、多変量解析の活用やタグチメソッドもこの手法の一つであり、多変量解析であれば1970年代より開発に活用されてきた。

 

当方が初めて多変量解析で研究成果を出したのは、タイヤの軽量化技術であり、タイヤメーカー20社の同一サイズのタイヤデータを主成分分析にかけ、各社の特徴を明確にし、さらに主成分得点などを活用し、予測される最軽量の重量見積もりやその時の構造の特徴を明らかにしている。

 

当時はマイコンが登場したばかりでインテルの8088やザイログのZ80評価キットが販売されていた。

 

また、シャープはZ80搭載パソコンの発売を開始したが、搭載メモリーは全部で48Kバイトであり、それで多変量解析を行うならばF-DOSのセットが必要だった。

 

当方はパソコンではなくIBMの大型コンピューター3033付属の統計パッケージを使用して成果を出している。

 

ゴム会社には大型コンピューターが2台あり、1台は先進のPOS用であり、1台は技術者に開放されていた。

 

しかし、データを入力すればすぐに結果が出るわけでなく、新入社員のデータは計算処理が後回しにされることが多く、翌日に計算結果を見ることもあった。

 

多変量解析の有用性について社会人スタートの時に理解することができたのは幸運だった。科学で不明確となりそうな開発では、データ駆動の実験に切り替えて成果を出すことができた。

 

これが科学が命よりも大切に思っているような研究者には、腹が立つような手法に見えたのかFDを壊されるような研究の妨害(隠蔽化の動きがあり、転職の決断をしている)を受けている。今はアカデミアが率先してそれをやろうというのだから時代の進歩だろう。

 

イムレラカトシュは、科学と非科学の境界は曖昧であり、時代によりそれは変わる、という名言を残している。これは名言であり、弊社の問題解決法のよりどころでもある。

 



お申込みはこちら

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2020.10/10 電気炉の暴走

ポリエチルシリケートとフェノール樹脂をリアクティブブレンドにより、分子レベルで均一に混合された前駆体の合成を1982年に成功した。これを用いて、世界で初めて成功した、経済的な高純度SiC合成実験では、電気炉の暴走が重要な役割を果たしている。

 

すなわち、最初の実験で設定された電気炉のプログラムで実現される温度条件では、未反応のシリカやカーボンが残存していたことが後日の実験で示されたからである。

 

最初の実験であったことや、その電気炉が納入されたばかりの新品であったことなどから、電気炉の扱いに手慣れた主任研究員の方が、実験条件のプログラムを電気炉に設定してくださった。

 

当方は、ただサンプルを電気炉にセットしただけで、運転開始もその主任研究員の方が操作された。しかし、SiC化の反応が生じる温度に達した瞬間に電気炉が暴走し始めた。この欄で以前この詳細について述べている。

 

この結果、高純度SiCの合成に成功したわけだが、暴走という現象が安全上の問題として研究所で検討された。またそれが納入されたばかりの電気炉という理由で、検収作業の疑義の問題にまで及んだ。

 

すぐに、安全委員会による調査が行われたが、異常が見つからなかっただけでなく、科学的に全く同じ動作で電気炉を運転しても異常は発生せず、暴走原因を解明できなかった。

 

プログラム運転中に温度センサーに異常が起こればPIDが正しく動作することも、また誤ってどこかボタンが押されたとしても電源が落ちる仕様だったので、何かエラーが発生したとしても今回の暴走のような事態に至らないことも確認された。

 

このような機械の暴走という異常は、それが再現されない場合に原因不明となってしまう。再現されて初めて科学的に原因を論じることが可能となる厄介な問題だ。

 

それをおそらく知っているのだろう。こともあろうに池袋で親子を横断歩道ではねた89歳の老人は、機械の暴走を原因として自分に責任がないと言い出した。

 

自動車では、仮に制御不能となったとしても、危険を回避し事故を起こさないように努める責任が運転者にはある。

 

車が暴走したならば、あらゆる方法を駆使して「安全に」車を止める責任が運転者にはあり、ただブレーキを踏んでいただけという発言から、それを果たしていなかったことは状況から明らかだ。また、運転者自身それをよく理解しているはずだ。

 

当方は電気炉の暴走が始まった瞬間に主任研究員に言われ、1度限りの大切なチャンスの実験であったにもかかわらず、非常ボタンを押して電源を落とし暴走を止めることを優先した。すぐに温度が下がり始めたが、断熱材の効果でそれは緩やかだった。

 

主任研究員が実験室に到着し、再度電源を入れたときに偶然保持温度のプログラムラインに炉体温度が乗ったため、電気炉はプログラムコントロールされ冷却動作に入った。

 

翌日温度が下がった電気炉の中には、最適条件でSiC化された高純度SiCが合成されていた。それは電気炉の暴走でもなければ見つからない反応温度パターンだった。

 

この時得られた高純度SiC粉末に対して2億4千万円の先行投資と研究所建設が決まっている。機械の偶然の暴走のおかげで幸運が訪れた。

 

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2020.10/09 ノウハウの伝承

高分子材料で発生する品質問題の多くは、科学で正確に論じることが難しい場合が多い。また、正確に論じようとすると分析費用が嵩むので適当なところで妥協することになる。

 

品質問題が起きたときに、どこまで解析を行い対策を講じるのかは、大変難しい実務上の課題である。

 

一方、高分子材料の市場で発生する問題について、科学的にすべて解析可能と豪語する人について信用しない方が良い。

 

高分子材料を階層的にとらえた時に何が問題かさえも曖昧となるケースもあり、それでも具体的な品質問題として解決しなければいけない。

 

そのようなときに、間違った問題を科学的に正しく解かれても、品質問題を再発することにる。市場での品質問題というのは、科学的正しさよりも再発しないように解決することが一番重要である。

 

そのため、市場で品質問題が起きると、過去の事例との比較や他で起きていないかなどの調査から始めるのが一般的だが、故障に至る現場の状況調査が不明点の多さを理由に不十分となりがちである。

 

環境関係の法令整備が進んだので、製品における故障を素材レベルまでその素性をさかのぼることが容易となった。現場の状況調査では、高分子材料の生まれてから故障に至る履歴が重要である。

 

もし、破壊した状態ならばフラクトグラフィーは必須で、科学的ではないと批判されても現場情報をすべて盛り込んで仮の結論まで出しておくべきである。これは、高分子材料の市場における破壊を考察する重要なノウハウである。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2020.10/05 高分子の難燃化技術無料セミナー

高分子材料の難燃化技術について、2時間の無料セミナーを行う予定でいるが、テキストの購入をお勧めしたい。

 

もちろん無料セミナーなのでテキストの購入は義務ではないが、2時間という短時間では、十分な説明ができない。

 

例えば評価技術については、LOIとUL94規格の簡単な説明程度しかできないので、テキスト付属の予備資料でセミナー後の独習が必要となる。

 

また、混練技術についても説明できないので、予備資料の独習が前提となる。ゆえにこの無料セミナーはテキストを購入していない聴講者にとって少しハードルは高いが、テキストが無くても難燃化技術の勘所はご理解いただけるように解説する。

 

以前2日間コースと1日コースで実施した評価結果では、2日間コースの方が評価が高かったので、二時間コースでは、何だこれ、という結果になるかもしれない。

 

しかし、形式知が少ない分野であり、経験知の伝承の重要性を感じており、2時間の無料セミナーを行うことにした。



お申込みはこちら

カテゴリー : 一般 学会講習会情報 電気/電子材料 高分子

pagetop

2020.10/04 ブリードアウトの無料セミナー

今月質問の多い高分子のブリードアウトについて、2時間の無料セミナーを開催する。通常6時間ほどの内容からポイントだけ取り出して解説する。

 

高分子初心者のためには、なぜ科学の結果と実務における結果が異なるのか、という視点で解説するので、材料開発の経験が無くても得るものがあると思っている。

 

二時間のセミナーだが、テキストは、補助資料として解説できなかった部分を添付するので購入する価値はあると思う。

 

さて、ブリードアウトを理解するためには、二つの重要なポイントがある。一つは溶解現象とは何か、他の一つは高分子の高次構造である。

 

ブリードアウトという現象は拡散現象であり、その理解は重要だが、実務では拡散現象よりも高分子の高次構造と溶解現象の理解が不可欠である。

 

これは、教科書に書かれている解説と少し異なる。しかし、実務でブリードアウトという現象を扱った経験から、この二つを十分に理解したうえで拡散現象の理解が重要だと思っている。

 

すなわち、拡散現象だけでブリードアウトが制御されているのであれば、品質問題の解決は容易である。しかし、現実は実験室の結果が市場で再現されない。

 



お申込みはこちら

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2020.10/02 ブリードアウトのセミナー他

下記予定で今月WEB会議システムを用いた無料セミナーを予定しています。ご希望の方は弊社へお申し込みください。

 

10月19日(月)13時30分から15時30分  問題解決法

 

10月20日(火)13時30分から15時30分  高分子の難燃化技術

 

10月23日(金)13時30分から15時30分  高分子のブリードアウト

 

お申込みはこちら

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2020.09/25 高純度SiCの発明(1)

セラミックス材料を高純度化する技術はコストがかかる。なぜなら結晶に固溶した不純物を取り除くために一度結晶を壊す必要があるからだ。

 

SiCであれば、BやAl,その他遷移金属は容易に固溶する。これら不純物を除去するには、昇華と再結晶を繰り返さなければいけない。いわゆるレイリー法である。

 

高純度原料を用いて高純度プロセスにより製造すれば、高純度セラミックスができることは、だれでも容易に想像できるが、レイリー法と比較して経済性が優れているのか、という検証は容易ではない。

 

それができたとして、価格を比較することは容易だが、実際にできるのかどうか、すなわち実証実験に費用がかかるからだ。

 

1980年代に高純度SiCの原料として、C(炭素)源は、高純度カーボン、有機物が、Si源は高純度Si,高純度SiO2、有機Si化合物、有機シリケート化合物が知られていた。

 

そして、これら原料の組み合わせ特許とそれを原料として製造する方法の発明がミカンの段ボール箱で15個分出願されていた。

 

このミカン箱の個数は、ゴム会社の知財担当の部長が当方に整理するよう送ってきた個数である。当時はデジタル化されていなかったので、20年分の関係する特許のコピーをこのように集めてそれらを整理することから技術開発をはじめていた時代である。

 

留学中毎朝テニスを一時間、夕方はボールが見えなくなるまでテニスをしてます、と日常を語ったことを後悔したが、段ボール箱15箱を2週間で整理している。

 

整理した結果は、どんぶり調査(ざる調査ではない)の結果と同様であり、エチルシリケート(ケイ素源)とフェノール樹脂(炭素源)の組み合わせ特許が存在しなかった。

 

エチルシリケートと他の炭素源の組み合わせや、フェノール樹脂と他のケイ素源の組み合わせ、並びにそれらを原料とした製造プロセス、応用技術に関する特許はミカン箱2箱分存在した。ただしSiCの製造方法に関係しないノイズ特許もこの中に含まれている。

 

カテゴリー : 一般 電気/電子材料

pagetop

2020.09/24 高分子の誘電率の不思議体験

新素材を開発する手法として科学で説明できない現象を再現よく発揮できるように創りこむ手法がある。

 

その材料が科学で説明できない現象を再現よく引き起こしてくれれば、現象の研究を科学的に行い、材料に創りこまれた機能を科学的に説明できるようになる。

 

このようなことを大学で指導してほしいのだが、大学は科学を教える場なので難しい、とある先生が申されていたが、その先生は、科学技術というものを理解されていない。

 

科学技術には、科学で生み出された技術と科学に裏打ちされた技術の2種類が存在する。後者は創造の過程が科学的に少し怪しいけれど科学で説明できる技術である。

 

PPSにナイロンを分散して絶縁破壊を調べると、一般的な混練プロセスで調整された材料では、絶縁破壊電圧が100Vとなるときがあるが、カオス混合を行った材料では、300Vを超えることがある。

 

電子顕微鏡観察を行うと前者にはナイロンのドメインが観察されるが、後者では単相として観察される。ゆえに絶縁破壊電圧が高くなった、と納得できるが、もう少し研究する必要がある。

 

PPSにナイロンを相溶させてカーボンを10%程度分散した材料でベルトを製造し誘電率を計測してびっくりした体験がある。負の誘電率を再現よく示したのだ。

 

残念ながら中間転写ベルトとしての性能が悪かったのでそれ以上の研究を行っていないが、同一組成なのに負の誘電率になったり正の誘電率になったりする。しかもそれをプロセスで制御できる、という冗談のような体験をした。

 

この体験については、目標とした製品性能が悪かったので十分な研究を行っていないが、もし若ければ、昼休み時間や定時後の時間を使って研究していただろう。

 

若い時の情熱は、お金に縛られないところが良い。不思議なことに爺になると若い時と同じようにお金にとらわれなくなるが、その時には体力がなくなって意欲が空回りする。若返りを目指して最近軽い運動を始めた。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2020.09/21 多成分ポリマーアロイ

PC/ABSは、PCにABSをブレンドしたポリマーアロイだ。ABSは三成分のポリマーをブレンドし高靭性化に成功したポリマーアロイで、PCは非晶性で透明度が高く高靭性のポリマーである。

 

PC/ABSは、高靭性のポリマーの組み合わせなので、高い靭性とPCの特徴である意匠性の優れた樹脂になる、と信じられている。

 

ところが、PC/ABS以外にPC/PSやPC/PETなどが開発されると、高いPCに安い樹脂をブレンドしてコストダウンを図った樹脂ではないか、と思いたくなる。

 

この視点で、PCに廃材となったいろいろなポリマーをブレンドしてみると、PCが70%以上含まれている限り、そこそこの活用できそうなポリマーができる。

 

PCで簡単にできたなら、廃材であるPETボトルを70%以上含有した樹脂も簡単にできるだろうと思ったら、これが難しく、PETボトルの射出成形体よりも優れた物性の樹脂を作り出すのに3ケ月必要だった。

 

マトリックスを構成するポリマーがPCからPETに代わると、樹脂の結晶化を制御しない限り、高靭性の樹脂を開発できない。

 

結晶化を制御できても樹脂の溶融時の粘度の温度依存性を射出成型に適合するよう制御しなくてはいけない。

 

少なくともこれらの問題を解決しなければ多成分のポリマーアロイを開発できないことが、開発をスタートして明らかになったので、データ駆動型開発手法とカオス混合の両者を用いて3か月で目標となる樹脂を開発した。

 

できあがったポリマーアロイは、難燃材を使用していないのにUL94-V2試験に合格する難燃性を新たな機能として獲得した。ポリマーアロイの面白さである。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2020.09/19 キワモノの扱い

STAP細胞の騒動は、その後どうなったのだろう。ドイツの科学者がSTAP現象を発見したとのニュースが騒がれた後、週刊誌に小保方氏の私生活が紹介されていた。

 

この手のキワモノ事件は傷つく人が多いので隠蔽化されたりするが、その結果悪者が得をするような状態になる。小保方氏と自死されたその関係者だけが不幸をしょいこむような状態を見ると、やはり触らぬ神にたたり無し、というのは本当だろう。

 

当方が高純度SiCの経済的な合成技術開発をたった4日の無機材研における実験で成功させたとき、無機材研の先生方は冷静であった。

 

当方が企業の研究者であったこと、アイデアがその当方から出ていたが企業は見捨てていたこと、実験のゴーサインとその場の提供は無機材研だったことから、丁寧にそのあたりの調整も進められて、小生は無事(でもなかったが)ゴム会社に戻ることができた。

 

ゴム会社では2億4千万円の先行投資がなされ専用の研究所も建設された。当初こそ20名弱のプロジェクトで動き出したが、住友金属工業とJVを立ち上げるまで一人で死の谷を歩くことになった。

 

JV立ち上げ後電気粘性流体の耐久性問題を一晩で解決したり、傾斜機能粉体はじめ特殊な構造の粒子を3種ほど合成したところFDが壊され始めた。

 

やはり触らぬ神にたたり無し、は本当である。一人でJVの仕事をしていたので大変だったので、電気粘性流体とのかかわりなど持たねば良かったのだが、電気粘性流体の事業化まで程遠い状態を見捨てておけなかった。

 

転職後、負の誘電率というキワモノと遭遇した。福井大学で客員教授をしながらその扱いを悩んだが、結局インピーダンスに絶対値をつけて材料設計パラメーターとした。

 

このころになると、たたりを避ける道を選ぶようになっていた。科学ではなく化学の世界には化け物が今の時代でも登場する。

 

PPSと6ナイロンの相溶も化け物現象である。これをカオス混合という技術で製品化したが、いまのところ何もたたりが無いがーーーー。

カテゴリー : 一般 電気/電子材料 高分子

pagetop