活動報告

新着記事

カテゴリー

キーワード検索

2023.10/19 Na二次電池

EV出遅れ日本が叫ばれ続けているが、もうすぐ4年ぶりのモーターショーである。今年から

Japan Mobility Show 2023 というそうだ。



EV用電池としてはLi二次電池が主流だが、水素燃料電池やNa二次電池も可能性がある。後者について日本メーカーはあまり関心が無いようだが、弊社は10年ほど前から細々と研究を続けている。


Li二次電池について1991年にソニーが商品化した話が有名だが、1986年にカナダの会社が、1987年にはブリヂストンがLi二次電池を商品化して販売している。そしてブリヂストンはその成果で日本化学会技術賞を受賞している。


電池分野について気になるのは、多数派の見解に流される傾向が強く、商品化の歴史についても誤った記事が多い点である。Naイオン二次電池についても当方が数社訪問し、技術者と懇談しても起電力差から将来性のない技術として頭から否定されてきた。


しかし、2015年にフランスで汎用Naイオン二次電池が発売され、あっという間にその生産の中心は中国となっている。コロナ禍前に驚いた状況となっていたが、日本ではそれでも関心を示さない。


それどころか今は全固体電池の実用化が本命とばかりに全固体電池開発競争となっている。確かにこのような先端技術は、とにかく先端を走り切ることが一つの勝利の方法だが、もう一つ先端ではないが長所のある技術について使いこなす開発も勝利の方法である。


LiとNaの標準電極電位は、約0.3VLiの方が高く、その結果Na二次電池の起電力等の性能はLi二次電池を越えることはできない。ゆえに電池開発者はこれを根拠にNa二次電池の未来を閉ざした考え方をする傾向にある。


しかし、Na二次電池がLi二次電池よりも満充電の時間が半減することが最近分かってきた。また、LiよりNaは地球上に豊富に存在しコストも安い。そのようになってくると、Na二次電池の使いこなし技術の可能性に対する期待が大きくなる。


詳しくは弊社に問い合わせていただきたいが、Na二次電池とLi二次電池とを組み合わせて蓄電デバイスを組み立てると、充電時間の短い蓄電デバイスを組み立てることが可能となる。


科学の視点では、標準電極電位がLiより0.3V低いNaで二次電池を組み上げてもLi二次電池を凌ぐことができないので面白くないかもしれないが、技術の視点で見るとNa二次電池の未来はまだ明るい。

カテゴリー : 一般 電気/電子材料

pagetop

2023.09/22 新規ポリマーアロイ(6)

PPSへ可塑剤や他のポリマーを分散すると、その添加量に応じてTgが変化する。例えば6ナイロンを添加すると、6ナイロンのTgは上がり、PPSのTgは下がる。


すなわち、ポリマーの場合には2種類のTgが観測され、カオス混合により両者は相溶して一つのTgとなるのだが、PPSのTgは相溶により10℃前後下がる。


相溶は、非晶質相だけで起きるので、Tgが下がる欠点はあるが、PPSの靭性改善には良い方法であり、例えばPPSフィルムの場合に6ナイロンがただ添加されただけの場合のMITは3000前後であるが、これが6ナイロンの相溶したフィルムでは20000以上に改善される。


脆いと言われるPPSだが、ここまでMITが改善されると高速プリンターの動的部品である中間転写ベルトへ利用できるようになる。


PPSの改善効果を狙って退職後ナノポリスで研究をしているのだが、このTgを下げないで物性改善できる添加剤を10年ほど前に開発している。


低分子の添加では、低分子のTgは観察されないので、低分子の添加によりPPSのTgが下がる現象だけが観察される。しかし、10年前に開発されたPH01の添加では、なんとPH01の添加量を増やしてもPPSのTgは変化しない。


すなわちPPSの耐熱性を阻害しないで、その靭性を改善できる添加剤である。PH01は低分子ではないが、このような物性を分子設計されたオリゴマーである。詳細は弊社へ問い合わせていただきたいが、興味深いのは力学物性以外の改善効果もナノポリスから最近報告された。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2023.09/20 新規ポリマーアロイ(5)

昨日微妙なニュースが飛び込んできた。当方はコロナ禍前の2019年までナノポリスへ出かけては、学生やローカルメーカーの指導をしてきたが、その中に1社PPSコンパウンドを事業としている会社があった。


そこの総経理から中国EVメーカーが使用するPPSコンパウンドについて、全EVメーカーへのPPSコンパウンド納入に成功したという連絡が入った。すなわち中国のEVメーカーで生産される製品に使用されるPPS部品は、当方が指導した会社のコンパウンドになったという。


理由は、世界のどのメーカーよりも高品質だからだそうだ。タグチメソッドを導入し開発したのだからロバストが高いのは当然だが、他社では実現できない品質が達成されている、と自慢していた。


特にMAO処理では、高い品質効果が確認されているという。これは今連載で説明しているが、カオス混合の寄与が高いと思っている。


そのほかに、データサイエンスで解析して得たある知見をコンパウンディングに用いているが、これは科学では説明できない現象(注)を活用している。


科学を重視というよりも科学パラノイアに近い技術者には理解しがたい技術でコンパウンドを生産しているので、他社ではリバースエンジニアリングが難しい。


いろいろ感謝された後、10月に来てほしいと言われたが、現在の日中関係を思い、回答を差し控えた。ナノポリスで指導していた技術については、当方の著書にすべて書いてあり、日本で公開済みであるが、著書の売り上げは芳しくない。弊社へご注文いただければ、送料サービスでお送りいたします。


また、タグチメソッドはじめデータサイエンスについては、セミナー活動を通じ、当方のノウハウを公開している。中国や台湾でもセミナーをたまに実施しているが、集客は日本と比較にならないほど盛況で悩ましい問題だと思っている。


日本でも当方のセミナーに多くの人に参加していただきたいと願っている。今週末の難燃化技術セミナーでも50年近くのノウハウとこの10年の成果やデータサイエンスを用いた開発事例を公開する。また、ディープラーニングについても入門程度の解説を行い、難燃化技術とマテリアルズインフォマティクスについて理解できるよう準備してる。


(注)ほとんどの混練技術に関する形式知の説明では、分配混合と分散混合の概念が用いられている。この概念では理解できない現象が混練で起きている。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2023.09/19 新規ポリマーアロイ(4)

PPSは結晶化しやすい樹脂で、力学物性に影響が出るほど球晶が大きくなる。例えば力学物性測定用に射出成形されたPPSを200℃で1時間ほど放置すると、引張強度は低下する。


これをPPSの劣化と勘違いしてはいけない。球晶が成長したために靭性が低下し、強度が低下したのである。再度粉砕して射出成形すれば強度は復活するのでPPSの分子が断裂したわけではない。


PH01という新たなPPS添加剤を開発した。この添加剤は、カオス混合によりPPSに相溶するが、二軸混練機だけで混練したのでは相溶しない。


PH01を7%添加したPPSをカオス混合しコンパウンドAを製造した。このAを射出成形し、200℃1時間放置しても強度低下しない。6時間放置しても強度はそのままである。


ところが、PH01を同様の添加率で通常の二軸混練機だけで製造したコンパウンドBでは、200℃1時間の放置で強度低下する射出成型体しかできない。


AとBを化学分析しただけでは、その差異は不明である。すなわちリバースエンジニアリングで解明できない射出成形体を製造できる技術ができたのである。


これは中国ナノポリスで行った研究の成果で国内の某社で実用化されている。特許も出願されているので興味のあるかたは確認していただきたい。もちろん弊社へ問い合わせていただいても構わない。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2023.09/16 新規ポリマーアロイ(3)

PPSと6ナイロンはカオス混合により相溶する。これはフローリー・ハギンズ理論から説明できない現象であるが混練技術を工夫すれば起きるのである。


この実験のヒントは、東工大で行われたPPSと4,6ナイロンの相溶現象におけるその場観察である。すなわち、PPSと4,6ナイロンを二枚のガラス円板に挟み、それぞれ反対方向に回転させて剪断流動を発生する。


300℃近くになると円板の周辺部分が透明になってくる現象が観察された。すなわち、温度と剪断力でPPSと4,6ナイロンが相溶することを世界で初めて実証した扇沢グループの実験である。


この研究があまり注目されていないのはもったいないことである。この研究成果を思考実験により展開するとカオス混合装置が生まれる。そして4,6ナイロン以外のナイロンでも相溶するのではないかという妄想が生まれる。


この妄想が目の前で起きると感動に変わるが、当方の部下は当方を信じていなかったので腰を抜かした。当方は妄想で十分に理解していたので感動しただけであるが、彼はキャという悲鳴とともに腰を抜かしたのである。


PPSと6ナイロンの混練されて透明な樹脂液として二軸混練機の吐出口から流れている光景は、それくらい驚くべき光景なのだが、フローリー・ハギンズ理論の問題を理解しておれば感動の光景となる。


6ナイロン以外に12ナイロンとか数種類ナイロンをPPSとともに混練したがいずれも透明な樹脂液となった。面白いのはこの後である。


ストランドとして回収したサンプルを机の中に保管し、在職中こっそりと眺めるのが楽しみとなったが、5年ほど透明だった。2011年3月11日に最終講演が15時から予定されていたのでサンプルを準備していたが、ぐらっと来た。


その後忘れていたが、ストランドとして回収後のサンプルを数年後に見つけたら真っ白くなっていた。すなわち少しずつスピノーダル分解し、白くなったのである。白濁したが、ストランドの柔軟性は失われていなかった。これには腰を抜かしそうになった。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2023.09/14 新規ポリマーアロイ(2)

同一配合で異なる物性のコンパウンドをプロセス設計により作り分ける、これができない技術者は新材料開発能力が低い、と言わざるを得ない。


また、配合と物性は1:1に対応すべき、と某国家プロジェクトの目標に書かれていたようなことを信じている技術者はもっと材料技術について勉強すべきである。


PPS/6ナイロン/カーボンを二軸混練機で常識的な混練をしている限り、押出成形で半導体ベルトの歩留まりが100%となるコンパウンドを製造することは不可能である。


力学物性を犠牲にすれば、二軸混練機を二回用いることで、電気抵抗の安定したコンパウンドを製造可能である。例えば6ナイロン相にカーボンを分散し、それをPPSと混練すると得られる。


しかし、カーボンの分散したナイロン相のドメインが硬いので、そのようなコンパウンドで製造した無端ベルトは紙のような靭性のベルトとなる。


力学物性も電気物性も両方目標物性を満たしたコンパウンドを製造するためには、現在のところカオス混合しかない。すなわち、カーボンの凝集相が6ナイロンの相溶したPPSに分散した高次構造を有するコンパウンドなら電気物性も力学物性もその品質が良好な半導体無端ベルトを押出成形できるようになる。


ただし、PPSと6ナイロンのχは大きいので、これはフローリー・ハギンズの理論に反する、と考えた方は優秀である。カオス混合は、科学の形式知に反するような現象が発生するトランスサイエンスの混練方法である。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2023.09/13 新規ポリマーアロイ(1)

早期退職を決意したとたんに難しい仕事が舞い込んできた。配合を変えずに半導体無端ベルトの押出成形歩留まりを10倍にする仕事である。


某国家プロジェクトの目標として、配合と物性が1:1に相関し、などと間違ったことが書かれていたが、もしこれが形式知となるならば、この仕事の解は無い。


しかし、無機材料でも有機材料でも配合と物性は、1:1で対応しないことの方が多い。ゆえに国家プロジェクトの目標とされたのだろうが、これを1:1で対応させようとするセンスでは、新材料の開発など難しい。


しかし、そのような感覚のテーマに数億円の予算が毎年ついてプロジェクトが進められている日本の研究開発においてその任にある人は、弊社のセミナーで少し勉強した方が良い。


配合が同一でも高分子材料ではコンパウンディングプロセスが異なれば、物性は変化する。これは常識であり、それゆえ新たなプロセシング技術の研究は、いつの時代でも求められている。


PPS/6ナイロン/カーボンの単純な組成で半導体コンパウンドを製造するときに、少なくとも2種類の全く異なる高次構造のコンパウンドを作り分けることが可能だ。


技を磨けばこの単純な組成で3種類以上の高次構造を創り分けることができる。負の誘電率を有するコンパウンドまで製造できた、と書くとウソだという人がいるかもしれないが、電気技術者にコンパウンドの評価をお願いしていたら、彼が見つけてくれたのである。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2023.09/12 Pythonで学ぶパーコレーション

絶縁体高分子に導電性微粒子を分散すると半導体高分子が得られるが、この時に発生する現象がパーコレーションで、導電性微粒子の体積分率が増加した時に体積固有抵抗がある体積分率で急激に減少する領域ではパーコレーション転移が起きている。


このシミュレーションプログラムをPythonで作成しながらパーコレーション転移について学ぶセミナーを常時開設しているので、関心のあるかたは問い合わせていただきたい。


帯電防止技術と複合プリンターのキーパーツ開発事例をもとに、パーコレーション転移のシミュレーション方法とそれを活用した製品開発技法を解説し、同時にPythonによるプログラムの解説を行う。


このプログラム解説は、単なるPythonの文法解説以外にプログラミング言語としてのPythonの特徴をクリアにし、発展的独習が可能なように指導している。


プログラミング言語は、名古屋弁や大阪弁よりも易しく、コツさえつかめれば自学自習が可能であり、そのコツを弊社のセミナーでは伝授している。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2023.09/06 Pythonで学ぶパーコレーション

絶縁体高分子に導電性微粒子を分散し抵抗測定を行うと、その添加率(体積分率)に従い、抵抗が減少する。そしてある添加率のところで急激に抵抗が減少する現象が観察される。


これがパーコレーション転移と呼ばれる現象で、電気抵抗だけでなく、弾性率や線膨張率でもその変化を確認することができる。ただし、電気抵抗のように桁数が大きく変動する変化ではないので、あまり注目されていない。


ただ、昔から混合則とか複合則というルールがあり、未だにいいかげんな教科書でこのルールを見かけることがある。1990年ごろ、当方が日本化学会で研究発表を行ったときに、パーコレーションという言葉を用いたが、会場がシーンとなってびっくりした。


他のセッションでは、複合則とか混合則という言葉が常識的に使われていたので、奇異に思われたのだろう。当方は1979年に指導社員からパーコレーションの説明を受けている。


当時はスタウファーの教科書が頼りであったが、化学系の人でこの教科書を読んでいる人は皆無だった。その教科書によれば、カリフォルニアの山火事について数学者たちがボンド問題とサイト問題として議論したのが最初だという。1950年代で当方が生まれた頃の話である。


それが高分子の世界で一般的になるのに40年以上かかっている。数理モデルを数式で理解することが難しかったからである。この数式はコロナの流行でよくテレビで見たようなクラスター理論と通じている。


無限クラスターが生成するところがパーコレーションの閾値である。微粒子が真球であれば、体積分率で30%前後のところである。長径と短径の比、アスペクト比が大きくなるにつれこの閾値は小さくなる。


数式で数理モデルを理解しようとすると大変であるが、コンピューターの中で実際に微粒子が分散する状態を再現して計算すると理解しやすい。


このシミュレーション法についてエンジン部分のPythonプログラムを配布してWEBセミナーを弊社で行っています。Pythonのプログラミングを学ぶには良い教材ですのでお問い合わせください。パーコレーションを理解できるとPythonが身についている、というセミナーです。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2023.09/01 お化けの話

フィルムの帯電防止層を開発していて、負の誘電率に遭遇した時には驚いた。ちょうど福井大学客員教授に就任した頃で、お世話になった先生が電気化学の教授だった。


ベセラゴが予言したそうだが、キワモノと言われており、データに絶対値をつけて発表したほうが無難だとご指導を受けた。


すなわち、研究の本筋とは関係ないところで研究の価値を下げてしまう問題があったからである。当時取り組んでいたのは、パーコレーションの検出方法である。


当方は、技術経営には興味があったが、基礎研究に身をささげるまでの勇気は無かった。ゆえに、インピーダンスに絶対値をつけて、誘電率の議論とならないように発表を工夫している。


それから10年以上経過して、半導体無端ベルトの開発を担当したときに、「倉地さん、たいへんなものができてます」と電気専門の部下がデータを見せてくれた。負の誘電率である。


確かに大変な現象であるが、半年という限られた時間の中で、カオス混合プラントを立ち上げ、無端ベルトの押出成形歩留まりを10%から100%にしなければならない状況で、少し迷惑な話だった。


高分子の導電性を制御するために、導電性微粒子を絶縁体である高分子に分散し、そのパーコレーションを制御する必要がある。その実験過程で負の誘電率がお化けのように現れた。

カテゴリー : 一般 電気/電子材料 高分子

pagetop