活動報告

新着記事

カテゴリー

キーワード検索

2020.08/04 コンセプト(1)

軟質ポリウレタン発泡体難燃化技術のテーマを担当した時に世界初の難燃化技術を提案してほしいと言われた。そこで当時注目されていた新素材ホスファゼンを難燃剤として応用する技術を企画した。

 

特に明確なコンセプトがあったわけでなく、世界初=当時の先端技術の応用研究=ホスファゼンという単純な連想ゲームである。

 

工場試作まで成功したが始末書を書かされた話をこの欄で書いている。市販されていない材料を自分で合成して研究テーマを成功させた。ところが、事業性が無い、ということで社内の問題になった。

 

管理職がテーマとして認めて推進したわけだから、管理職が責任を取るべきなのに、新入社員がやりたいと主張したので新入社員の責任ということになり始末書を書かされたのである。

 

半年もかけない開発期間で過重労働をして工場試作を成功に導いても始末書である。もちろん新入社員二年間は残業代が出ないのでタダ働きである。

 

パワハラが問題となる今時にこのような入社間もない社員の扱いを信じてもらえないかもしれないが、事実であり証拠も思い出として残している。

 

始末書の内容でもめたのだが、新規合成されたホスファゼンでイントメッセント系(当時このような概念は無かった。イギリスの学会誌にも掲載されている)の難燃化システムという世界初の成果を経済的に実現するために、「燃焼時の熱でガラスを生成させ難燃化する」コンセプトを管理職に提案し、それを始末書に書いた。

 

始末書か企画書かわからんような書類だったが、管理職が喜んで経営陣に提出している。そして半年後には工場試作を成功させよ、と過重労働を命じてきた。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2020.07/15 無料セミナーのお知らせ

下記予定で、試験的にWEBで無料セミナーを開催します。受講希望者はお申し込みください。なお各講座6名と人数制限を設けていますので、先着順とさせていただきます。また、テキストは有料(5000円)で、7月16日までにお振込みください。但しテキストの購入は必須ではありません。

1.7月17日(金)9時30分から11時30分

「高分子の混練技術概論」

講師の著書(定価4800円)がテキストです。

2.7月17日(金)13時30分から15時30分

「高分子の難燃化を事例にマテリアルインフォマティクス概論」

ただいま作成中です。

3.7月18日(土)13時30分から15時30分

「高分子の混練技術概論」

講師の著書(定価4800円)がテキストです。

以上

今回のセミナー参加者募集は終了しました。

カテゴリー : 一般 学会講習会情報 宣伝 電気/電子材料 高分子

pagetop

2020.07/13 無料セミナーのお知らせ

下記予定で、試験的にWEBで無料セミナーを開催します。受講希望者はお申し込みください。なお各講座6名と人数制限を設けていますので、先着順とさせていただきます。また、テキストは有料(5000円)で、7月16日までにお振込みください。但しテキストの購入は必須ではありません。

1.7月17日(金)9時30分から11時30分

「高分子の混練技術概論」

講師の著書(定価4800円)がテキストです。

2.7月17日(金)13時30分から15時30分

「高分子の難燃化を事例にマテリアルインフォマティクス概論」

ただいま作成中です。

3.7月18日(土)13時30分から15時30分

「高分子の混練技術概論」

講師の著書(定価4800円)がテキストです。

以上

今回のセミナー参加者募集は終了致しました。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2020.06/09 カオス混合装置

ウトラッキーにより20世紀末伸長流動装置が開発された。二軸混練機の先に取り付けて使用する仕様になっていたが、生産用として普及していない。

 

原因はその装置の構造にあり、押出量を増やそうとすると装置が大きくなり、実用的ではなくなるからだ。

 

この装置はその名前の如く、コンパウンドの伸長流動を促し、ナノオーダーレベルで高次構造の設計が可能だ。

 

伸長流動装置の発明から10年ほどしてカオス混合装置が開発された。これもウトラッキーの装置同様に二軸混練機の先に取り付ける仕様となっている。

 

ウトラッキーの装置と異なるのは、伸長流動と剪断流動を発生させる仕組みの段数が2-3段しかないので量産用の装置を設計しても伸長流動装置ほど巨大化しない。

 

この装置は当方が2005年に発明し、それから15年間半導体ベルト用コンパウンドの量産に使用されているが、パッシブな構造のため故障0の生産用として優れた装置だ。

 

中国ではこのコピー品が勝手に普及し始めたが、国内の生産用はまだ2社だけである。

 

テスト機用も当初高価だったため、見積書を提出しても販売に結びつかなかったが、加工賃の安い中国の金型メーカーを見つけたので一気に見積価格を下げることができた。

 

条件は付くが、仕様さえ合えばテスト機用のTダイよりも安価である。ご興味のあるかたは弊社へお問い合わせください。

 

もし中国のコンパウンドメーカーに市場を奪われた国内のコンパウンドメーカーがあれば、サービスしたいと思っている。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2020.02/18 マテリアルズ・インフォマティクス(MI)

産業革命以降の技術開発を支えたのは科学であることを否定する人はいない。ただし、科学の方法が登場する以前から技術開発は行われており、それゆえ論理学をベースにしたパラダイムでその開発スピードが加速された、と科学の役割を捉えることができる。

 

このパラダイムについては、名探偵ホームズが愛読された時代が示すようにすぐに一般にも受け入れられ現代は科学全盛の時代である。

 

一方40年前に登場した刑事コロンボでは事件解決にホームズとは異なるパラダイムが存在することを示しただけでなく、物語の最初に犯人と事件の情報を視聴者にすべて示すという手法で、ホームズとは異なる事件解決のプロセスを楽しませてくれた。

 

実は、マテリアルズインフォマティクスは、この刑事コロンボの登場と同様に捉えると理解しやすい。

 

すなわちホームズはベーカー街221Bで仮説を設定して事件に臨むスタイルを特徴としたが、コロンボは泥臭く情報を集めて事件を解決した。

 

マテリアルズインフォマティクスによる材料設計では材料データベース(情報)が問題解決の最初に位置し、その後のデータ処理に雀の巣のような頭(コロンボは癖毛)ではなくコンピュータを用いるのだ。

 

その用い方も従来の仮説を検証するといったパラダイムと異なり、シミュレーションで機能を確認するというパラダイムとなっている。

 

3月31日開催のセミナーでは、マテリアルインフォマティクスを実務に導入するにあたり、簡便に利用できる多変量解析やタグチメソッドの概略を「わかりやすく」説明するとともに、それらを用いて材料設計を行ってきた演者の事例を中心にマテリアルズインフォマティクスにより開発効率が加速される実感を伝授する。

 

無機材料から有機材料まで実用化した経験から幾つかの事例を選び、材料技術者以外の方にも参考になるセミナーを目指す。詳しくはお問い合わせください。

カテゴリー : 一般 学会講習会情報 電気/電子材料 高分子

pagetop

2020.02/17 高分子のプロセシング

材料について学ぼうとするときに、そのプロセシングから勉強する方法がある。また、この方法は材料について詳しく勉強しようと総花的教科書を購入するよりも材料の特徴を手っ取り早く理解できる。なぜならプロセシングは、材料の特徴を活かして組み立てられているからである。本書はこの点を意識して書き上げたので、高分子についてその特徴を短時間に学ぶことが可能である。

カテゴリー : 電気/電子材料 高分子

pagetop

2020.01/29 高分子の熱重量分析(2)

TGAには二種の測定モードがある。一つは等速昇温測定であり、もう一つは恒温測定である。

 

前者よりも後者の方が詳細で精度の高いデータが得られる。ゆえにTGAの使い方として、等速昇温測定を行ってから、緻密なデータが必要な時に、特定温度で恒温測定を行う、という手順となる。

 

ちなみに、この両者で測定精度の違いがどのくらいあるか、評価をした経験がある。例えばSiC生成の速度論的解析を行ったときに、活性化エネルギーが等速昇温測定では恒温測定よりも10%から20%高めに得られた。

 

恒温測定で得られた活性化エネルギーの値がSiC中のカーボンの拡散における活性化エネルギーに近かったので、等速昇温測定では誤差が大きくなったと推定している。

 

この時、2000万円かけて室温から2000℃まで1分以内に昇温可能な超高速昇温熱天秤を開発して測定している。それゆえ恒温測定モードの値には自信がある。

 

しかも、反応が起きない1000℃まであらかじめ加温しておいてから恒温測定を行っているので測定データには誘導期間の情報まで現れていた。

 

等速昇温測定では昇温速度が問題となるが、昇温速度を早くすると誤差が大きくなるだけでなく、失われる情報も出てくる。また昇温速度を早くすると測定データは高温度側へシフトする。

 

ゆえに、TGAでは10℃/minよりも遅い昇温速度で測定すべきで、DSCや粘弾性測定もTGAの昇温速度に合わせて測定すると比較できて便利である。

 

また、実務では10℃/minで測定すると600℃まで一時間でできるので都合がよい。

 

注意しなければいけないのは、15℃/minの昇温速度で600℃まで精度よく測定できない製品を使用する時である。

 

TGAは少なくとも昇温速度30℃/minで600℃まで精度よく昇温できる製品を選びたい。

 

その理由は、サンプルの昇温速度がガス流量の影響を受けるからで、ガス流量を多くすると温度が上がりにくくなる。

 

酸素濃度の影響を調べたいときに、酸素濃度の異なるガスを同一ガス流量で測定するのがよいが、実務ではガスの混合比を変えるよりもガス流量を変化させた方が簡便である。

 

補足だが天秤部分の構造により、ガス流量を変化させたときの浮力の影響に違いが現れる機種も存在する点にも注意するように。

 

昔真空理工が浮力の影響を受けにくく昇温速度が速くても精度よく測定可能な赤外線イメージ炉の製品を供給していたが、最近見かけない。

カテゴリー : 電気/電子材料 高分子

pagetop

2020.01/17 混練の本

本書は学術書ではない。混練について考えるときに必要な知識を整理してまとめた本である。2005年に混練の基盤技術も無い会社で、半年以内に混練プラントを建設しなければいけなくなったときに当方が読みたかった内容である。

当時8万円前後の混練に関する本や高価なシミュレーションソフトを購入したがいずれも役に立たなかった。本については自分の金で購入したので問題ないが、シミュレーションソフトは会社の経費で購入したので何らかの成果を出さなくてはいけないと思い、とりあえず結果を出したが、混練工場が稼働後だった。

驚いたことにゴム会社新入社員時代の手帳に書かれていた内容で今でも安定生産の行われているプラントができてしまったのである。そしてその手帳の内容は、8万円前後の本に書かれていたパラダイムと大きく異なる。

たまたま、ゴムタイムズ社から講演依頼があり、混練の講演をしたら、それを出版しようという話になった。これが、この本の背景である。40年前の知識に最新の高分子の知識を加えた体系として構成している。混練という技術のプロパティーを考慮し形式知だけでなく経験知も躊躇なく盛り込んでいる。

混練のプロからハンバーグや餃子をおいしく作りたいと考えている主婦まで一読の価値がある、と思っている。

また、高分子について勉強しようという方にも、役立つと思っている。

出版前のサービス価格を設定していますので弊社へお問い合わせください。

カテゴリー : 一般 宣伝 電子出版 電気/電子材料 高分子

pagetop

2019.12/30 粉砕で微粒子はどうなる?

セラミックスでは、粉体の粉砕技術は重要である。それゆえ40年近く前のセラミックスフィーバーでも様々な粉砕機が開発された。

 

また、粉砕により粒子が正規分布するだけでなく、多分散系となることも確認された。そしてサブミクロンの粉砕を行うためには時間をかけなければいけないことが分かってきた。

 

高分子の混練の教科書を読むと粉体が解砕されてゆく機構が書かれているが、その時粒子がどのような分布になるのか言及していない。

 

ゴムにカーボンを配合するケースは多いが、カーボンは一次粒子が金魚のうんこ状態でつながっている。困ったことにうんこの形態まで変化する。

 

ロール混練では時間をかけてうんこ状態をうまく分散できるが、二軸混練機では一定時間で混練物が吐出されるのでさまざまな分布となっていることを容易に想像できる。

 

力学物性では、マトリックスの弾性率に依存し80から800μmまで許容される凝集粒子の大きさが異なる。

 

すなわち最大粒子径がある一定値を超えると靭性に影響が現れるので、引張強度が低下する。

 

電気物性では、分散状態の影響が力学物性よりも大きく現れる。パーコレーションの問題は力学物性にも存在するが、電気物性で大きな問題となるのは、パーコレーション転移前後でその物性が大きく変化するためだ。

カテゴリー : 電気/電子材料 高分子

pagetop

2019.11/25 情報通信分野の高分子材料

アルビントフラーの第三の波はあっというまに過去の著作となり、バブル崩壊から30年近くたった。そのような状況で5Gが注目を集めている。

 

この変化の時代に新材料の技術が求められており、来年にかけて招待講演を依頼されましたセミナーでその内容を公開してゆく。すでに取り組んでいるメーカーも注目していただきたい内容である。

 

各セミナーではテーマを明確に設定し解説するので、全部参加していただければ、今起きている材料技術のイノベーションを学べる。

 

まず、下記セミナーでは、情報通信の切り口で解説する。希望者は弊社へ問い合わせていただきたい。

 

開催日時:2019年11月27日(水)10:30~16:30
会  場:ちよだプラットフォームスクウェア ミーティングルーム B1F
〒101-0054 東京都千代田区神田錦町3-21  → 会場へのアクセス 
受 講 料:45,000円 + 税    ※ 資料・昼食付

*弊社へ申し込まれますと割引価格になります。

カテゴリー : 一般 学会講習会情報 宣伝 電気/電子材料 高分子

pagetop