活動報告

新着記事

カテゴリー

キーワード検索

2024.07/17 高分子材料の寿命

材料の寿命というパラメーターは、扱いとその意味が難しい。機能が壊れた時を通常商品の寿命としているが、基本機能が大丈夫でも外観に問題が出てくれば、それを寿命と呼ぶ場合もある。


材料の破壊強度の寿命に限定して考えると、セラミックスは最も寿命が長く感じたりする。2000年前の磁気でも100円ショップの茶碗程度の強度が出る。


鉄は、強度を測れなくてぼろぼろになっているかもしれない。皮革は、ぱりぱりとなっており、強度測定を行おうとしてもその形状へ切り出すのが難しいだろう。


高分子材料では、その寿命を考えるときに酸化が大きな問題として捉えられ、酸化速度の研究が多く行われた。最近では物理劣化という考え方も出てきて、プロセシングとの関係を誤った考え方で説明している研究もある。


高分子再生材の活用が求められているので、市場でどのように高分子劣化が進行してゆくのか、再度その研究が見直されるようになった。


すなわち、高分子の寿命は単純に酸化劣化だけで進行しているわけではないことに皆気がつき始めた。かつて研究発表された酸化速度で劣化しているのであれば、海洋ゴミの主役として高分子材料が注目されることもなかっただろう。


法隆寺の五重の塔を見れば、電化製品の寿命以上に高分子材料の寿命の長いことに直感的に気がつく。また、当時各種添加剤など無かった時代なので、老化防止剤の見直しも進むだろう。


ちなみに、新入社員の時に樹脂補強ゴムの開発を行った時、耐久試験では、寿命に関わる添加剤を抜いて実験を行っている。詳細はお問い合わせください。

カテゴリー : 一般 高分子

pagetop

2024.07/13 高分子の密度

有機高分子材料(以下高分子)は、無機材料と比較し、密度ばらつきが大きい。無機材料でも空隙や欠陥が密度ばらつきを生み出すので、この表現は誤解を生むが、「空隙や欠陥が無い場合にも」と一言加えると、誤解も無くなるかもしれない。

但し、高分子の自由体積を空隙や欠陥と見なさない、という前提になるが。ややこしいのは、どこからが空隙で、どのサイズ以下が自由体積なのか、という区別が難しい場合がある。

そのような議論を避けるために、「空隙や欠陥の無い状態で、高分子の非晶質相の密度ばらつきは、無機材料の非晶質相のそれに比較して大きい」と、やや面倒な言い方をすれば上げ足をとられないかもしれない。

それでは、高分子の結晶は、無機材料と比較してその密度ばらつきは同じなのかというと、これも少しばらつきが大きい。

石丸構文に出てくるような捻くれたツッコミを警戒していると、このような問題の議論は難しくなる。しかし、高分子について考えるときに、実は密度以外の特性でもおおざっぱなとらえ方をしないと、現象から新たなアイデアを生み出すことができない。

例えば、弾性率は密度に依存する。ゆえに密度ばらつきは弾性率が関わる、引張強度や曲げ強度、衝撃強度のばらつきを生み出す。誘電率も同様に密度の影響を受けるので、屈折率などもばらつく原因となる。

そもそも高分子の密度は、自由体積の量を制御できないのでばらつく。そこへ成形時に空隙や欠陥が入ることが避けられないので、さらに大きくばらつくことになる。

射出成形体と延伸により製造されるフィルムとの密度ばらつきの比較をすると、後者は少し小さいので空隙や欠陥の存在で生じる影響を見積もることができる。そのような見方をしても、高分子の密度ばらつきは、無機材料のそれより大きい。

何を言いたいのか、書いていて不安になってきたが、形式知ですべて論じることができない分野では、このような不安はつきものである。

勇気をもって結論を言えば、高分子は無機材料に比較して密度ばらつきが大きいが、それには自由体積の影響がある。また、空隙や欠陥は、無機材料よりも入りやすく、さらにそのばらつきを大きくする原因となりうる。

カテゴリー : 一般 高分子

pagetop

2024.06/27 再生材の活用ノウハウ

2022年に法律が施行され、高分子材料の再生利用が活発化している。当方は2010年にコニカミノルタでPETボトルのリサイクル樹脂を2種類開発するために2011年3月11日を最終出社日に指定して再生樹脂開発を成功させた。


そして2011年の新製品に搭載され、この功績で2012年に社長賞を受賞したとかで元部下が大量のPETボトルを記念品として贈ってくれた。


コンサル業務を依頼された企業にお礼としてそれを配り、今は最後の1本をセミナーで自慢しているのだが、コニカミノルタは今や再生樹脂使用のトップランナーとなっている。一方当方は退職日に帰宅難民となり、せっかくの記念日が大変な思い出として残っている。


2010年頃は環境対応樹脂と言えばポリ乳酸をはじめとしたバイオプラがその主役だったが、今では再生樹脂がバイオプラ並みの主役となっている。ところがバイオプラは新たな生産が可能だが、再生樹脂は、限りある廃材から製造するので高騰している。


このような状況で政府は再生資源の有効利用を促進するために、新たな立法を計画しており、その法律では再生材の使用が義務化されるという。高分子材料に限って言えば、これは大変なことなのだ。


リサイクル業者は少し前までサーマルリサイクルを前提としていた。それを再生材とするためには、混練機の導入が必要となる。リサイクル業者が有価物として販売するのはコストアップとなる。


その他諸々の問題が出てくるはずである。もし再生材に関して何か困っていることがあれば、弊社に御相談いただきたい。いつでもWEB会議で対応いたします。

カテゴリー : 一般 高分子

pagetop

2024.06/26 高分子の難燃化技術

高分子の難燃化技術は、火災という非平衡の現象を扱うので、トランスサイエンスの分野である。その内容についてAIに尋ねると、それなりの回答を出してくれる。すなわち、情報は大量に世の中に存在する。


しかし、AIにたずねると失望するが、体系だった知識が意外と存在しない。かつて中部大学武田先生は名古屋大学教授時代に科学的なアプローチでこの分野に挑み、経済的な難燃化手法としてハロゲン化合物と三酸化アンチモンとの組み合わせ系を提案されている。


これは、これで、科学的な一つの答えであるが、製品設計にあたり、ノンハロゲンが仕様に入ってきたときにこの答えでは適合しない。


「それでは、どうしたらよいのか」と悩まれた方は弊社のセミナーを受講してください。トランスサイエンスの視点で分かり易く解説いたします。お問い合わせはセミナーのサイトからお願いします。受講生一人でも対応いたします。


セミナー内容には、今年3月に開催された日本化学会春季年会発表内容も含みます。また、ご希望によりタグチメソッドのPythonプログラムも無料で差し上げます。


生成系AIの登場で知のあり方が変わってきました。情報を知に変換し、新たなアイデアを創出できる能力が求められています。弊社のセミナーはこのような視点で提供しています。受講希望者は、お問い合わせください。

カテゴリー : 一般 学会講習会情報 高分子

pagetop

2024.06/09 高分子の難燃化技術

かつてかぐや姫の時代に耐熱性衣のアイデアがあり、かぐや姫は結婚を迫る皇子にそれをねだった。耐熱性高分子はそれくらい歴史があるのだが、1970年代に難燃性高分子の研究が活発になり、リン酸エステル系難燃剤の開発競争が起きている。


その後1980年末に、臭素系難燃剤の開発競争が起きているので、高分子の難燃化技術は、20世紀末の30年間にほぼ完成したと言える。


1970年代には、怪しげな大学の先生がおかしなことを言いだしたので、難燃性のない天井材が難燃性天井材としてヒットし、その後台所を中心とした火事が増加する事案が社会問題となり簡易耐火試験が生まれている。


この試験法の作成にあたり、ヘルメットと安全靴を持って出張した話をこの活動報告に書いている。しかし、この怪しい先生の事案はある種の科学コメディーでもあるが、ここでは関係者を傷つけるのであまり詳しく書けない。


アカデミアでそれなりの研究成果を出されたのは武田邦彦先生だろう。この先生はご自分の研究成果をWEB上に公開されているのでご覧になっていただきたい。


この先生によると経済的な難燃化システムはハロゲン系難燃剤+三酸化アンチモンの組み合わせシステムだという。これは、実務者から見ると微妙な評価となる。


もっと安い方法でUL94-V2を通過できるシステムを設計することができるからである。ちなみに当方が開発したPETボトルのリサイクル材を使用した樹脂では、難燃剤を用いなくてもUL94-V2を無事通過する。


しかもノンハロゲンである。ペットボトルリサイクル材以外のプラ廃材を20wt%含有しているので100%廃材リサイクルの環境対応樹脂である。


開発当時廃材のPETは70円/kgであり、これを80%含有した樹脂だったので、最も経済的な環境対応難燃性樹脂として複写機内装材にすぐに採用されている。

カテゴリー : 一般 高分子

pagetop

2024.05/22 EV車普及の失速

今更取り上げる必要はない話題だが、テスラの株価下落はじめ様々な関連事象が報じられるようになった。面白いのはコロナ禍の時にトヨタの全方位戦略が批判され、株価にも影響が出たにも関わらず、ここにきてトヨタの全方位戦略が見直され、株価が上がり始めた。


当方は高分子の環境問題セミナーやCASEのセミナーで、トヨタとホンダの全く異なる戦略、すなわちホンダは、時代背景からエンジンを捨てて極端なEVシフト戦略を打ち出しているが、トヨタはエンジンを残す、すなわちHVに注力する戦略を解説し、時流に逆らうトヨタに軍配が上がると主張してきた。


そして、日産のe-powerのコストダウンが進み、日産が国内で2位に浮上するという予測シナリオを講義している。実は自動車の開発戦略として、今日産が極めて効率の良いビジネス展開を世界で行っている。


先日部品会社に無理なCDを強いる問題が報じられたが、そのようなことをしなくても国内市場に関しては、トヨタやホンダよりも利益率の高いビジネスを展開できているはずである。


かつての日産の自動車ラインアップに対して現在の品ぞろえはマツダと比較しても寂しいが、これは国内だけで、今や日産はグローバルカンパニーなので世界市場におけるラインアップを評価する必要がある。


日産と言えばリーフやアリアがEV車として知られているが、国内において軽のジャンルのサクラが好調で、世界でEV車販売の失速が伝えられる中、日産のEV車に関しては順調である。リーフがモデルチェンジ前で売り上げが落ちているが、国内で新車が出れば持ち直すはずである。


すなわち、EV車の販売がここにきて伸び悩むどころか急ブレーキがかかっているのは一時的であり、5年後には、またEV車の販売量は増加に転じると思われる。その時のEV車は今よりも進化し、家電量販店までもが扱っている時代になっているかもしれない。すでにヤマダ電機がEV車の販売を発表したがーーー

カテゴリー : 一般 高分子

pagetop

2024.05/21 高分子材料の難燃化技術開発

高分子材料を難燃化する時に問題となるのは、難燃剤の添加により、他の力学物性が低下することである。この問題をどのように克服したらよいのか。


力学物性と難燃剤の添加量との関係をグラフ化すると力学物性が低下するが、その時に線形性をもって低下する場合とそうでない場合がある。


少量の添加で1割以上急激に低下後緩やかな減少を示すグラフとなる場合が多いのではないか。これが難燃化しようとするプラスチックの可塑剤としても用いられている難燃剤であると、少量の添加で急激な低下ではなく緩やかな低下となる。


この二つのグラフが得られると、力学物性の低下を最小限にしてプラスチックを難燃化するアイデアへとつながる。すなわち難燃剤を組み合わせて用いるアイデアである。


もし難燃化しようとしているプラスチックに芳香環を持った化合物が分散しやすいならば、芳香環を有するポリマーとブレンドして難燃剤を添加するアイデアを思いつくが、これが意外と期待された結果とならない場合がある。


期待された結果とならないが、何となくよさそうな結果が出たりすると大変である。それなりの考え方をもって検討しないと開発の無限ループに落ちる。


特許を調べていただければわかるが、プラスチックを難燃化しようとしたときに考えられるアイデアについては、ほとんど公開されている。


そしてよさそうな特許の実施例を実験してみて、大した結果とならないことがあるとペテントとして処理したりするが、ちょっと待った!である。特許出願にもお金がかかるのでインチキ特許とは限らない。隠れたノウハウが存在する可能性がある。


難燃剤と力学物性の問題に限らず、二律背反問題では、科学的なアプローチが誤った判断へと導くことがある。それを防ぐためには、タグチメソッドは一つの良い方法であるが、この手法は科学と非科学の境界に位置する手法である。


なぜなら、あるシステムで成立した条件が他のシステムでは成立しないことがあるからで、故田口先生は、「システム選択は技術者の責任」と言われていた。


最初に問いを投げかけた一つの答えは、タグチメソッドで開発を行う、であるが、それ以外にもデータサイエンスによる様々な手法を使って最適化する、という考え方もある。詳細は弊社へお問い合わせください。

カテゴリー : 一般 高分子

pagetop

2024.05/20 高分子の劣化

高分子成形体のトラブルで劣化は厄介な問題である。なぜなら金属やセラミックスのように破壊力学の形式知が整っていないからである。


今でも1-2件時代遅れの研究発表として、劣化と結び付けた高分子の酸化分解の研究がある。自動酸化という現象があるので、高分子の劣化が酸化分解で進行する、という説明は分かり易い。


しかし、500年以上前のゴムの塊について表面付近のゴムは酸化分解して低分子量化していたが、内部はそれほどの酸化が進んでいなかった事実を知ると、酸化劣化という現象を溶媒中で実験することにいくつか疑問が出てくる。


30年以上前にポリウレタンの加水分解が大問題とされたことがある。ポリウレタンの劣化現象は即座に解析され、対策の効果もすぐに現れたが、他のプラスチックについて未だに劣化現象の理解が進んでいない。


古いところでは、井上靖の「氷壁」を是非読んでいただきたい。これが高分子の劣化とどのように結びつくのか、一読していただければご理解いただけるが、これは作品が発表される1年前に起きた事件、実話をモチーフにしている。


すなわち、ナイロンザイルが結晶化して脆くなり切断し遭難した、あの事件である。当方が生まれて間もないころに起きた事件だが、その後何度も映画化されTVドラマも作られた。


滑落して死亡する小坂はその時代の二枚目が、魚津はニヒルなあるいは個性派の俳優によって演じられる形が定番となったドラマだが、ドラマ以上に実話はどろどろと展開している。


東洋レーヨンのナイロンを東京製綱がロープにした製品で事件が起きたのだが、安全基準ができるまでに20年以上かかっている。その間に20人以上もの登山者が安全基準のないナイロンザイルの犠牲になった。


次週火曜日に大阪で高分子の破壊と寿命予測に関する日刊工業新聞主催のセミナーでこのあたりの話も少し致します。最近の話題ではホンダのリコール問題を取り上げます。ご興味のあるかたはお問い合わせください。


上記セミナー詳細はこちら

カテゴリー : 一般 高分子

pagetop

2024.05/18 融体

PPSの押出成形で気になっていたことがある。当方以外にも気にしていた人がいたが、こんなものでしょう、という会話で終わっていた。順調に成形技術が完成していたのでラインを触りたくなかった。


あれから20年近く経った。中国でPPSコンパウンドの開発を指導したりして、この時と関係するような現象を見てきた。レオロジーの測定装置を販売している会社にお願いして一日機械を借りて実験した。


楽しかった。想像していた結果となったのだ。それから10年経った。以下は想像の話で、妄想程度にご一読いただければと思う。


まず、PPSの押出成形において金型と押出機の中間ネックの温度安定性が悪かった問題。規則正しい揺らぎならばPID制御の影響だが、最大10℃前後の範囲で変化している温度の揺らぎとヒーターで加熱しているのに設定温度よりも5℃低い状態が続いたり、と気持ちの悪い変化だった。


このような変化があったにもかかわらず、押出成形は安定だった。この時の変化は、PPSの球晶がラメラに崩れ、その崩れたラメラが溶融していた時の変化ではなかったろうか、と想像している。


DSCの計測結果では、Tm付近でブロードに吸熱ピークが現れる。この時のピークトップを樹脂のTmとしているが、実は完全に融解した状態ではない。5月28日大阪で開催される日刊工業新聞社主催のセミナーではデータとともにご説明いたします。


セミナー詳細はこちら

カテゴリー : 一般 高分子

pagetop

2024.05/10 高分子と芸術

金属やセラミックスと異なり、高分子を理解するためにはある程度の芸術的なセンスが要求されるように思う。技術全般に対してそのような見解を述べる方がおられるが、例えばセラミックスの工業製品であれば、芸術的なセンスをデザイナーに任せて、材料開発を形式知で行う、ということが可能だ。


ところが、高分子材料では、形式知が整備されていない分野が多いので、セラミックスや金属のように形式知中心により技術開発を進めることができない。


これはゴム会社から写真会社に転職して分かった。形式知をもとに開発の無限ループに陥っていた人がいた。そして改めてゴム会社の研究所にいた研究者たちを思い出しても芸術を理解できない人たちは、形式的な否定証明を好んで用いていた(無限ループをする方が技術者として期待できる)。


科学ならば少し勉強すれば誰でも使いこなせるようになるが、芸術的なセンスとなるとやはりそれなりの訓練が必要だ。当方がここで必要と言っているレベルは、天性の芸術性ではなくある程度の訓練で身につく芸術性のレベルである。


例えばフローリーハギンズ理論がある。これを信じ現象をこの理論に沿って眺めていると、PPS/6ナイロン/カーボンという決まった配合のコンパウンドで実用的な半導体無端ベルトを開発することはできない。


それこそ無地のキャンパスに欲望に沿ってオブジェクトを描き上げるぐらいの感覚で材料設計を行わなければ実用化できなかったと思っている。


そこにあったのは論理ではなく、パーコレーションを制御したいという欲望だけであった。その欲望を満たすための高分子高次構造の絵を書きあげた(注)ときに、転写ベルトの実用化を確信した。


コンパウンドの開発に6年を費やしたと前任者に聞いていたが、その材料設計と全く異なる発想で、配合組成は同一のまま、全く異なるコンパウンドを芸術的な視点で設計したのである。


荒唐無稽な自慢話をしているのではない。分かり易く言えば、6が月後に迫った製品の新発売までに前任者の開発した配合を変えずに実用化するために実現されなければいけない高次構造の絵を書いたのである。


そこには、形式知からの論理的必然性は無い。逆にその絵から技術として用意しなければいけない設備を考えていった。そこでカオス混合が出てくるのだが、カオス混合機など世の中に無かった。


これもただ絵を書いただけである。ゴム会社に入社した時にご指導いただいた指導社員から教えていただいたカオス混合を実現するための設備の絵を書いただけである。


おそらくダ・ビンチも飛行機の設計をこのようにしていたはずだ。但しダ・ビンチの飛行機では人類初の飛行機を作ることができなかった。


ダ・ビンチは飛行機を見たことが無かった。しかし、当方は指導社員にロール混練におけるカオス混合の「技」を見せていただいた。その「技」に似せてカオス混合機の絵を書いただけで、ダ・ビンチとの違いは「見た」経験の有無である。観察は重要である。


今はどうか知らないが、工学部建築学科ではヌードのデッサンを授業として行う、というので喜んでいた友人がいた。建築学科だけでなく工学部では必要な学習だと思う。


ヌードでなくても加納典明が説明していたようなキャベツのデッサンでも構わない。当方は学生時代に写真と平行して少し絵を書いていたが、その才能の無さに気がつき、写真だけが趣味となった。カメラを被写体に向けるだけでも観察眼を養うことは可能である。


(注)これは実話である。Pythonで学ぶパーコレーション転移というセミナーでも体験談を話している。科学的に考えると二律背反となるような問題解決には、技術で解決、とはゴム会社のCTOが好んで言われていたことだが、芸術まで含んだ技術である。「芸術的な技術」というものがあるが、科学で考えてアイデアが出ない時には、芸術を考える頭の使い方をすべきである。美というものは調和がとれていなければいけない、と言っていた人がいたが、必ずしも調和は必要ない。パーコレーションは、相互作用の無い前提では、統計の確率に左右され、当方独自のシミュレーションで得られる一つだけのグラフは、必ずしも美しいグラフとならないが、クラスター生成の条件を様々にして得られた複数のグラフが描かれた様子は美しい。その美しさの中に実現すべき技術の条件があった。ただセミナーの時にはこのような説明をしていません。ここでは正直に当時の体験を書きました。

カテゴリー : 一般 高分子

pagetop