活動報告

新着記事

カテゴリー

キーワード検索

2013.05/28 科学と技術(パーコレーション)

絶縁体である高分子に導電性のカーボンを混合してゆくと、添加量の体積分率(v)がある量(vp:閾値)になると、急激に抵抗が下がる現象が生じる。その後はカーボンの添加量に応じて緩やかに抵抗が低下してゆく。これがパーコレーション転移と呼ばれる現象で、電気抵抗だけでなく、弾性率変化などあるマトリックスへ粒子を添加してゆく時の物性変化で観察される。

 

電気抵抗の場合には1000倍以上の物性変化がパーコレーションの閾値で観察されるのでこの現象の研究に電気特性がよく使用される。弾性率でも柔らかい物質に固い物質を添加した場合には下に凸の関数になったりするのでパーコレーションの閾値を確認できるが、電気特性ほどの変化を示さないので閾値の場所がわかりにくくパーコレーションの物性研究に扱いにくい。

 

パーコレーションの科学は古くから数学者の間でボンド問題とサイト問題として議論されており、パーコレーションという言葉の由来はコーヒーのパーコレーターからきている。日本語では浸透理論となる。

 

パーコレーションを科学的に論じるとクラスターのできやすさを議論する確率理論になる。技術的な解決方法にはマトリックスとフィラーの相互作用やフィラーの界面、フィラーの凝集体の制御など切り口は複数になる。絶縁体高分子から半導体材料を製造するときに電気抵抗制御を導電性材料で行うのだが、必要な電気特性に近いフィラーを使用するのが最も無難な材料設計になる。しかし、経済性の問題がでてくる。

 

技術的な解決方法で注意しなくてはいけないのは、パーコレーションの閾値近辺で材料設計をしてはいけないという点である。物性ばらつきが大きくなるからである。たまたま実験室で物性を安定化できても生産で大きくばらつくことがある。あるいは市場で使用中にばらつくこともある。しかしどうしても閾値近辺で材料設計しなければいけないときにどうするのか。

 

電気特性であれば、Wパーコレーションのアイデアを使用できる。例えばカーボンであれば、カーボンの凝集体を分散し、分散体の体積分率が閾値の手前あるいは閾値を過ぎたあたりになるように材料設計を行う。分散体の凝集力を制御すると分散体の抵抗を制御でき、全体の抵抗を安定化できる。このパーコレーション転移制御技術を利用した製品は6年前世の中に製品(MFPの中間転写ベルト)として販売された。

 

技術ではこのような解決方法が存在するが、科学では、まだWパーコレーションの問題が扱われていない。技術が科学を先行している事例である。科学技術という言葉がある。また、科学と技術は車の両輪である、という金言もある。20世紀は科学が著しく進歩しその結果技術革新のスピードが早くなったが、21世紀は技術が科学をリードしているのかもしれない。山中博士のノーベル賞も技術的成果としてヤマナカファクターが見いだされ、科学的に証明された。

カテゴリー : 一般 電気/電子材料 高分子

pagetop