2013.06/27 科学と技術(混練10)
昨日の続き。
スクリーニングを行っていた30部という水準と、混練しにくいという理由で結晶化度の低いゴムを検討していた当初の方針で、1年間実験を行っていたら見落としていた可能性があった。フェノール樹脂を用いた樹脂補強ゴムにヒントを得て、3次元に架橋する樹脂でなくとも樹脂補強ゴムができるのでは、とスタートしたプロジェクトではあったが、その科学的理解が十分ではなかった。
すなわち、樹脂補強ゴムの開発は科学的情報など無い中で、単なるアナロジー的発想で始まった研究開発プロジェクトである。アナロジー的発想ではあったが、樹脂がゴム中に分散し結晶化すればフェノール樹脂の架橋と同様の効果を期待できるのでは、という仮説はあった。その仮説を基にしてメンターは樹脂が海で、ゴムが島になったときの高次構造を仮定してレオロジーシミュレーションを行ったのである。
しかし、なぜ30部でなければいけないのか、とか結晶化度がどれだけなくてはいけないか、という情報は存在しなかった。正確に表現すると、前者の科学的情報は数学の世界に存在したが、材料科学の関係者は、1979年の頃パーコレーション転移を知らず、混合則で現象を捉えていたために30部の意味を理解できなかった、となる。
パーコレーション転移が材料科学の分野に普及していったのは1990年前後である。この頃になって写真会社で開発した酸化スズゾルの帯電防止層の技術は化学工業協会から技術特別賞を頂いたが、インピーダンスの評価技術を用いてパーコレーション転移を制御した当時珍しい技術であった。
このように異なる分野で科学的情報が存在しても、その情報の理解が進み普及するまで二昔前まで10年程度の月日がかかった。情報化時代の今日でも、2-3年かかっている。Π型人間とかたこ足的技術者とか時代の変遷とともに異分野の情報を入手し理解できる人材の重要性が表現されてきたが、今は足の数よりもキーボードを叩く”マメさ”が重要な時代だ。千手観音が理想となるのだろう。
ただ、情報の普及がスローな時代には、発見の喜びが多数あった。そして発見した現象についてタコツボの楽しみを味わうことができた。今は、新しい現象を発見したならば、猛スピードでまず走らなければならない時代である。キーボード片手に情報調査と実験を並行に行わなければ安心できない時代である。山中博士がヤマナカファクターを発見した非科学的方法を秘密にして、特許出願を優先した姿勢は日本のアカデミアの研究者もアメリカ並みになってきて競争とスピードを意識するようになったことを示している。
pagetop