2013.09/02 科学と技術(41)
複雑な現象を科学で説明するときにモデル化がよく使われる。その現象の最も支配的な因子に焦点をあて、モデルを組み立て、論理的に現象を説明する方法である。モデルと現象がほぼ同じであれば科学的な実証モデルとして認められる。
現象とモデルが一致しないときに新たなモデルを考え直すのか、誤差として認めそこで妥協するのか、あるいは全く別のアプローチで現象を説明するのか多くの場合悩む。フローリーハギンズ理論ではχの導入により、一致しない現象をすべて誤差としているように思われる。そして誤差の支配因子を探索する研究が今も行われている。フローリーハギンズ理論で合わない例も多いので、新たなモデルを考えた方が良いようにも思われるが、多数の科学者が正しいモデルと認めている状態へ新たなモデルを提案するのには勇気がいる。
科学の世界では真理を探究することが使命となるので厳しい議論に耐えなければならない。しかし技術の世界では機能を実現できれば勝利者である。真理かどうかよりもロバストの高さが重要となる。再現よくロバストの高い技術ができたなら、仮に間違ったモデルであっても、正しく機能しておれば大きな問題とみなされない。ただし機能の再現性やロバストの高さについては、市場に出す前に厳しく問われる。科学と技術では厳しく問われる観点が異なるのだ。
弊社の問題解決法のK1チャートは現象や機能を実現するモデルという見方もできる。複雑な因子の絡み合いが存在し、やってみなければ分からないところはループになる。しかしそのループについて無限ループになるのか有限ループなのかは科学的知識と経験から判断できる。有限ループと判断されたならただひたすら実験を行い、安定に機能を実現できる条件を絞り込む。こうしてできあがった技術は、ブラックボックス化しやすい。
安定に機能を実現できる条件が求まると、その条件を逆にたどることで科学的な考察を容易にできる場合が多い。半導体分野で使用されているプリカーサー法による高純度SiCの製造条件については、このような方法で技術を完成している。プリカーサーについては、フローリーハギンズ理論では説明ができない組み合わせとχの値であるにもかかわらず有機高分子と無機高分子が安定に均一化する、科学では説明できない現象である。また、SiC化の反応条件を探索する実験では不思議なことが発生し、1回の実験でベストな条件が求まった。
科学では説明できない世界であるが、新たな発見があればそれを頼りに新たな技術を開発できる。例えばプリカーサーの密度を制御すると新たな機能が生まれることを発見したならば、科学的推論を展開することにより、できあがったプリカーサーの密度も自由にコントロールできるようになる。
一つ条件が見つかるとその条件について科学的考察を加える。すると新たな機能を実現できる技術のアイデアが浮かぶ。技術開発における科学の使い方の一つである。
pagetop