2013.09/24 電気粘性流体用3種の粉体が生まれた状況
電気粘性流体は、半導体微粒子を絶縁オイルに分散させて製造する。電場をかけると半導体微粒子が帯電して電極間に並び、そのため懸濁オイルが流動性を失ってあたかも固体のように振る舞う。電場を取り除くと粒子の帯電が無くなり、もとの流動状態に戻る。電場でその粘性を制御できる流体である。70年ほど前にウィンズローにより発見されウィンズロー効果として知られていた。
しかし単純な半導体微粒子では電気が流れたり、高抵抗であれば微粒子が帯電したままになり流体の機能を失ったりする。すなわち電気粘性流体をデバイスとして活用するためには絶縁オイルに分散する微粒子の設計が重要になる。
このテーマはゴム会社に勤務して10年目に携わるようになった。電気粘性流体の重要な機能を発現する微粒子を社外から調達し開発していたために、テーマがうまく進捗せず、さらにゴムからの抽出物で增粘する問題を抱えプロジェクトがひっくり返りそうになっていた。不幸にもそのお手伝いをすることになった。不幸の理由は特に書かないが、お手伝いメンバーには重要な科学文献を見せていただけないなど開発に協力するうえでの制限があった。プロジェクトのメンバーは、頭ではなく労働力だけを求めていた。
しかしプロジェクトの状態を見ると、科学的に運営が進められていたが、機能粒子を外部から調達するなどの体制になっており重要な基幹技術の担当者が欠損していた。いわゆる常識的な、科学で電気粘性流体を解明し材料設計するという方針でプロジェクトが運営されていた。これは表現を変えれば技術が無いので科学的に技術を創りだそうとしている運営である。ところが電気粘性流体の增粘の問題では增粘メカニズムの科学的解析ができたが、プロジェクトに技術が無いため(注)に界面活性剤では対策できないという結論を出していた。
試行錯誤で增粘の問題を解決したら、それ以上はプロジェクトメンバーで行うから、ということになり雑務が回ってきた。成果が見えてくると功労者を排除し生え抜きを大切にしようとするマネジメントである。お言葉に甘えて雑務を行いながら、見いだされた界面活性剤の位置づけを知るためにカタログの多変量解析を行い情報提供したり、傾斜組成の粒子や、超微粒子分散粒子、コンデンサー分散粒子といった電気粘性流体用3種の粒子を雑務を終えた定時後創ってみた。
重要な科学論文を見せていただけないので、科学的ではなく見よう見まねで電気粘性流体の機能を実現できる3種類の粒子設計を行った。雑用という立場で多くの電気粘性流体を扱うことができたので経験の蓄積を行う事ができた。つまらないと思われる仕事でも誠実に真摯に行う意味がここにある。
(注)ゴム会社には基盤技術として界面活性剤の技術が存在した。社内の公開されたプレゼンテーションを聞けば毎年1-2件はその関係の技術を含んでいる発表があり、他部署のプレゼンテーションを聞けば技術の共有化が可能であった。ただ、多くの会社で同じような状況と思われるが、他人のプレゼンテーションを技術の共有化の機会として動機づけされていないためにここで紹介したようなことが起きる。また、科学的に基盤技術を構築し、とよく言われるが、すでに書いてきたようにおかしな考え方である。もし科学的にプロジェクトを推進しなければならないなら、最低1名技術者をメンバーに入れるべきである。企業において科学的訓練を受けた研究者だけで開発を行うと「モノ」はできない。企業のプロジェクトでは早い段階から企業内で育成された技術者を入れるべきである。学位を持った技術者であれば科学と技術の両方を推進できるので便利である。「なぜ」を追究する分析的研究者では「モノ」を創り出すことはできない。科学的に当たり前の結論を出すだけである。うまくいかないときにはうまくいかないことまでも科学的に説明するおかしな状況も生まれる。しかしそのおかしな状況に気がつかない研究部門の経営者も何人か見てきた。科学という思想は重要である。ただし「ものづくり」の行為を尊重しない思想重視の考え方には問題がある。ものづくりの行為にうまく科学を取り入れる手法が弊社の研究開発必勝法プログラムである。
pagetop