2014.05/15 フローリー・ハギンズ理論(9)
FH理論の物理学的な基礎事項には、ポリマーの混合におけるエントロピーとエンタルピーの扱いが含まれている。この点は、低分子における正則溶液の混合における扱いとどういう関係にあるのだろうか。
低分子の混合で考察される混合エントロピーの大きな効果は、一般に液相における混和現象に基づくもので、混合によるエンタルピーの扱いではあまり好ましくないためである。低分子の流動性における混合のエントロピーは、分子が自由に混ざり合って集まる状態を全て予測して求める、すなわちコンビナトリアル的なエントロピーである。
手元に教科書があれば見て頂きたいが、これはΣiNiln(Ni)に相関する。ここでNiは、系におけるiという種類の分子の個数を表す。ポリマーにこの考え方を拡張したFH理論では、この項をΣiNiln(φi)に置き換えている。なおφiは、あるポリマーiの体積分率を表す。
各ポリマーは、モノマーの重合によってできている。すなわち、ポリマー一分子には大量のモノマーが含まれている。しかし、ポリマーの混合物を熱力学的に捉える時の分子の個数は、これに比較して少ない。なぜならモノマーa個で1個のポリマーができるので、b個ポリマーが存在すれば、モノマー単位はaxb個存在することになるからである。
ここから得られる結論は、低分子の場合に比較してポリマーの混合のエントロピーは小さく、その相溶性を促進させるエントロピー的な力は弱いということになる。これでは以前この欄で紹介したが立体的に嵩高い側鎖基を持ったポリオレフィンとポリスチレン系TPEとの相溶を考えるときに矛盾が出てくる。
科学的な矛盾を承知し、自らの経験を信じPPSと6ナイロンをその間隔が1mm前後の平行なスリットへ通したら相溶し透明になった。FH理論を考えてきた経験で、すでに科学で説明された事柄でも技術者の長年の経験と合致しないところは、一度経験知で見直した方が良い、と言える。
第三者はそれをKKDによる開発と呼び、中には軽蔑する人もいるが、KKDが大きな発見をもたらし、新たな科学を創り出す事がある。少なくとも科学の存在しない時代には、KKDによる自然現象への取り組みが成されていた。科学の時代においてもKKDは時として大きな発見を導き出す。
例えばSTAP細胞は、植物では起きる現象だが動物では起きない、という科学的常識が、度胸のあるリケジョによりひっくり返され生み出された新たな科学の領域である。理研の笹井副センター長が記者会見でそれに近い発言をされた。経験豊かな日本のトップランナーがリケジョに引きづられた結果KKDでSTAP細胞の科学の世界が生み出されたのは新聞や週刊紙の報じるところである。理研という国民の税金で運営されているレベルの高い場所で作成されたイタヅラ書き程度の実験ノートは、その度胸の大きさを物語っている。
pagetop