活動報告

新着記事

カテゴリー

キーワード検索

2014.10/28 技術の伝承(9)

特公昭35-6616(以下特公昭35)を軸に特許戦略を立案し、実験計画を立てた。タイミング良くパーコレーション転移のシミュレーションソフトウェアーも完成した。産学連携で進めた研究結果では、特公昭35の実施例に記載された酸化スズゾルの体積固有抵抗は、20年近く前ライバル会社から出願された特許に書かれていたような絶縁体に近い物性ではなく、10の3乗Ωcmという導電体レベルの導電性で電子伝導性の材料だった。

 

それでは、なぜライバル会社や転職した写真会社でこの材料の導電性が悪いとされたのか?学術論文では高純度酸化スズの導電性は絶縁体と結論されていた。しかしこれは「結晶性」高純度酸化スズの場合である。

 

非晶性酸化スズの場合はどうか。学術論文が発表されていない。そもそもまともな研究論文は見当たらず特許程度に記載された情報だけである。産学連携で進めた実験結果が学術としては世界で初めての実験結果であった。この実験結果は日本化学会で発表されたが、非晶性材料における導電機構が問題にされた。

 

学術では導電機構が重要であるが、技術では電子伝導性で10の3乗Ωcmという導電体レベルの材料である、という結果、すなわち機能の存在を示す結果が重要である。幸いなことに世間は学術と技術の違いを認識していない、ということも分かってきた。

 

産学連携で見つかった導電体の機能がどうして特許や転職した写真会社では否定されているのか。それはパーコレーション転移という現象が存在するためだ。公開された技術情報や転職した会社の実験結果では、塗布膜の電気物性を評価している。バインダーに酸化スズゾルを分散し塗布するとパーコレーション転移が生じる。

 

また添加率を上げてゆくとひび割れしやすくなる。クラックは異方性が大きいので電気抵抗を高める方向に機能し、これもパーコレーション転移を生じる。すなわち導電性粒子のパーコレーション転移とバインダーの微小クラックが原因で導電性が低くなっていたのに酸化スズゾルに導電性機能が無いと結論していたのだ。

 

カテゴリー : 一般 電気/電子材料 高分子

pagetop