活動報告

新着記事

カテゴリー

キーワード検索

2016.09/03 カーボンを分散した半導体樹脂

高分子の大半は絶縁体である。ゆえに世界で初めて導電性高分子を発明した白川先生はノーベル賞を受賞された。絶縁体高分子に導電性を与えるためには、導電性のフィラーを添加すればよい。多くの場合コストが安いカーボン粉末が使われ、1000Ωcm程度まで抵抗をさげることができる。
 
ところが、10の10乗レベルの抵抗を有する半導体をこの方法で製造しようとすると大変難しい。パーコレーション転移が起きるために、抵抗が下がり過ぎたり、抵抗があがったりするからである。もしカーボンの導電性が低く、10の5乗前後であればこの変動を小さくできる。
 
この微粒子を高分子に分散し、目標とする抵抗の半導体物質を安定に製造するための微粒子の抵抗やその分散状態については、科学で推定可能で、技術目標まで科学的に立てることが可能である。すなわち、パーコレーション転移のシミュレーションプログラムを科学的に作ることが可能で、現実の現象をコンピューターで予測することができる。
 
このプログラムでカーボンのような導電性が良い微粒子を用いて、安定に10の10Ωcmの半導体を製造するには、微粒子の弱い凝集体を高分子中に発生させればよいことが示される。すなわち、弱い凝集体が10の5乗Ωcm程度の半導体微粒子として機能し、パーコレーション転移による変動を小さくする。
 
科学では、このようにパーコレーション転移を制御し高分子の高次構造設計目標まで示すことができるが、実際にこの高次構造を実現しようとすると大変である。科学では易しい問題でも技術ではかなり難しい問題となる。混練技術が科学で完全に解明されていないからだ。
 
カーボン超微粒子の弱い凝集体を均一の大きさで高分子中に均一に分散させるためには、分配混合を進めればよいことが教科書には書かれている。そのためのスクリューセグメントも経験的に知られている。しかし、それでもうまくゆかないのだ。
 
10年ほど前、日本を代表するコンパウンドメーカーの技術者から「素人は黙っとれ」と言われた。すなわち素人では理解できない世界であるというのが当業者の認識である。ところがそのコンパウンドメーカーを信頼していたら、とんでもないことになり、半年で自前の混練工場を建てなければいけない事態になった。
 
教科書に書かれていた混練技術は役に立たなかったが、ゴム会社で3ケ月間担当した樹脂補強ゴムの開発経験は大変役立った。残業代も出ない新入社員時代であったが、徹夜したり、サービス残業の毎日が定年前の開発で役立った。
 

カテゴリー : 一般 電気/電子材料 高分子

pagetop