2022.03/03 高分子の耐久劣化予測の落とし穴
高分子材料の耐久劣化試験で化学的因子についてアーレニウスプロットが良く用いられる。また、物理的因子については、時間温度換算則が用いられる。
科学に問い、答えを得る方法としてセミナーが多数行われている。弊社もこの手のセミナーでその手法を簡単に説明し紹介しているが、弊社のセミナーではこの方法で予測し、問題が発生した時の事例を中心に講義している。
その理由は簡単で、6時間もかけて例えばアーレニウスプロットの手法を説明しても実務に役立たないからである。実務で問題となるのは、これらの科学的予測法で予測しても品質の初期故障が引き起こされることだ。
それゆえ、科学的な予測手法よりも、その対策となる技術的手法を事例とともに解説している。例えばN社フィルムカメラの裏蓋フックがクリープ破壊した事例も説明しているので、N社の技術者にはぜひ当方のセミナーに参加していただきたいものである。
N社ファンの老人をニコ爺というそうだが、シェアが3位になったと言っても老人にN社のファンは多い。品質問題にあっても、C社やS社から魅力的なミラーレス一眼が出てもZ7を買ってしまうニコ爺の性をN社は大切にしていただきたい。
子供のころからペンタックスを愛用してきてもそのあこがれから、いつかは高価なN社のカメラをと思っている老人のカメラファンは少なからずいる。モーレツに働いたご褒美としてF100を購入しそれが防湿庫に保管していて壊れたのだ。
壊れたフックのフラクトグラフィーを行い、N社の技術者がクリープの破壊寿命予測を科学的に行っている様子を想像した。
高分子の一軸クリープ破壊挙動の推定にLarson-MillerのパラメーターKを速度論的根拠に基づくありがたいパラメーターとして用いているしたり顔のN社技術者の顔まで見えてきた。
しかし、1960年前後の線形破壊力学の成果で高分子材料の破壊を完璧に説明できないという理由で非線形破壊力学が1980年代に登場し、それがまだ完成していない。
さらに1970年頃に志ある材料メーカーからクリープ破壊速度が成形体密度の0.02程度の誤差で2倍になる問題を学会報告し、WEBに技術報告書として公開している。
この報告書を読むと、たとえ科学的にクリープ破壊寿命を予測できても安心できないことがすぐに理解できるのだ。また、科学的な予測は必要十分条件となっていないことに注意する必要がある。
セラミックスのような応力がかかってもその歪が小さい場合にクリープ破壊寿命が必要十分条件に近くなるが、高分子材料のようにクリープで歪が大きくなってから破壊する材料については、歪が大きくなった時に破壊に与える因子について吟味する必要がある。詳しくはセミナーで説明する。
pagetop