活動報告

新着記事

カテゴリー

キーワード検索

2022.05/19 主成分分析(1)

主成分分析は因子分析の一つで、n(因子)xm(データ組)個(n<m)のデータをn個の一次独立の因子のデータ組に変換する。他の因子分析との違いは全変動との比較で、変動の大きな順に因子を整理してくれるところだ。


この特徴があるので技術分野で使いやすい。例えば昨日まで説明してきた重回帰分析の説明変数を一次独立に変換して使用する場合に、全部の主成分を使用するのではなく、上位から必要な主成分を選んでモデル式を組み立てることができる。


主成分の特徴づけができておれば、各主成分に対するモデル式との組み合わせで、データ群の説明を読み解くことができる。


重回帰分析との組み合わせ以外に、主成分分析だけでも多変量データ群の整理に有効に活用できる。マテリアルインフォマティクスが盛んだが、人工知能を使わなくても人間の頭と多変量解析でデータマイニングが可能である。


マテリアルインフォマティクスはAIが登場して初めて考え出されたような説明がなされているが、人間の頭と多変量解析の組み合わせやタグチメソッドによるデータマイニングは50年近く前から行われえいる。


日科技連の新QC7つ道具の一つとしても紹介されているので確認していただきたい。アカデミアよりもアカデミックな研究所で新QC7つ道具を使って仕事をやっていたところ馬鹿にされたりしたが、今その馬鹿にされた手法がアカデミアから提案されているところが面白い。


今は、マテリアルインフォマティクスをやっていても馬鹿にする人はいない。長く生きているとこのような面白い光景を見ることができる。今はパソコンで簡単にできるが、昔はパンチカードにデータを打たなければいけなかったので大変だった。

カテゴリー : 一般

pagetop