活動報告

新着記事

カテゴリー

キーワード検索

2022.11/04 MIとTM(2)

深層学習では、観察対象(オブジェクト)から収集された多数のデータからオブジェクトの特徴を探るように、各ニューロンはそれぞれの関係に重みづけをしながら学習を進める。


すなわち、これはオブジェクトの機能を制御する因子について、各因子の2-3水準を変動させながら実験を行い、機能に対する寄与率を検討するプロセスと似ている。


もし、機能とその信号因子が明確ならば、そのプロセスで誤差因子の負荷をかけた動的な実験を取り入れると、誤差あるいは様々なノイズに対しロバストを高く制御できる因子を見つけ出す問題解決法となる。これはTMであり、SN比はロバストの高さの指標となる形式知として数学的に証明されている。


TMにおいて基本機能を決めるのは技術者の責任であるが、そこでは科学の方法として求められる仮説設定まで必要としない。


さらに、データ収集のための実験は、ラテン方格を用いて現象全体を視野にその一部実施で計画的に行う。すなわち考えられるあらゆる条件で実験を行う代わりにラテン方格を用いるのである。


ただし、得られたデータについて誤差に対する有意性を評価する分散分析を行うためにそれを用いる実験計画法とは、考え方が全く異なるメソッドである。


TMでラテン方格を用いる理由は制御因子のすべての組み合わせについて効率よく実験計画を組み立てるためであって、実験のばらつきについては、ラテン方格の外側に割りつけられた信号因子や誤差因子を用いて計算されるSN比が使われる。


現在データサイエンスによる問題解決のオンラインセミナーの参加者を募集しています。

セミナーの詳細及びお申込みはこちら

カテゴリー : 一般

pagetop