活動報告

新着記事

カテゴリー

キーワード検索

2022.12/01 リスキリングと不易流行(2)

問題を前にしたときに技術者は何を考えるのか。科学の時代では仮説を立てるのが常識とされた。実験は仮説に基づくものだけやれ、と声高に叫んでいた管理者や研究所リーダーがいたが、科学の時代ゆえの光景である。


科学誕生以前にも人類は技術開発を行ってきたのだが、その方法は徹底した現象観察である。シートン動物記にもその片鱗を見ることができる。科学の時代であっても現象観察は重要な方法である。


ニュートンは、リンゴが落ちる現象について、頭の中で現象を再現する思考実験により、万有引力の法則を発見している。そしてこの手法をマッハ力学史を著したマッハは、非科学的と述べている。


ところが、研究所ブーム以来科学に毒されて、このどちらかと言えば泥臭い現場的な方法は、仮説設定による実験に追いやられた。


DXの進展で、現象観察の結果抽出されたデータや情報活用が容易になった。すなわち、1960年以前は数学者でなければ計算できなかった解析が、誰でもプログラムを用いれば容易にできるようになったのだ(弊社のサイトでは無料でこのプログラムを公開している)。


例えば、PPS/6ナイロン/カーボンの配合を変更せず、歩留まりをあげる方法について、仮説を立てて実験をしようにも実験計画そのものが難しい。


なぜなら、外部からコンパウンドを購入し、現状の制御因子を変更せずに実験を行え、とは、一休の頓智話に出てくる屏風に書かれたトラを捕まえろ、というようなものだ。


そこで、過去の研究開発データを統計手法で解析しなおし、パーコレーションの検討が不十分であることを見出した。これはデータサイエンスの手法である。


そして検討不足のパーコレーションについて、PPS/6ナイロン/カーボンの配合系でどのような現象となるのか、あらゆるカーボンの分散状態についてシミュレーションした。


但し、シミュレーションプログラムは、スタウファーの教科書に書かれた数値計算シミュレーションではなく、実際に粒子が分散する様子が分かるようにモデル化し、C#でプログラムしたのだ(セミナーではエンジン部分をPythonで書き直し配布している)。


そして、パーコレーションの安定領域をグラフから目視で選び出して、その時の構造モデル2種類を実験で確認しただけである。歩留まり100%を実現するまで、仮説を用いた実験など用いていない。


今技術者がリスキリングするときに考えなければいけないのは、科学で毒された仮説中心の実験方法からデータサイエンスによる現象解析の手法をどのように実験計画へ実装したらよいのか、という問題だ。


科学の方法と同様に現象観察を統計手法により科学的に進めるデータサイエンスの手法は、単なる情報処理の専門家の説明によると、従来の仮説に基づく実験との関係が見えにくい。


仮説に基づく実験方法は重要であるが、科学に拘束されず新たな機能を見出すためには、現象観察により新たな機能を見出すためのデータ処理が重要となってくる。このデータサイエンスのスキルを身に着ける方法は、弊社にご相談ください。

カテゴリー : 一般

pagetop