2024.04/10 データサイエンスと私(3)
データから情報を取りだす技術が情報工学であるが、今はデータから「知」を取り出すことが求められる時代となった。すなわちデータマイニングをどのように行うのか、が情報工学の研究対象である。
しかし、まだ完璧に成功しているわけではない。「コンピューターの処理によりデータから取り出された情報」を知になるのかどうか、人間が確かめねばいけない段階である。
これは、当方が40年以上前から取り組んできた状況とさほど変わっていない。当方がデータサイエンスで解をだすと、周囲のスタッフが「科学的に求められたものではない」とイジメてきたのである。
これをいじめでは無く指導と受け取り、データサイエンスで得られた解を科学的に改めて証明し、解を求めてきた。
転職の原因となった電気粘性流体の問題では優秀なスタッフ6人が長期間かけて出した否定証明の科学的に完璧な解をデータサイエンスにより一晩で解を出すことができたのは、このような努力を10年以上してきたからである。
ちなみに本当のAIと呼べるものは、かつて話題になった「マトリックス」という映画で描かれた世界に登場した「AI」である。また、マテリアルズ・インフォマティクスでも十分な知となっていないから、それをネタに研究論文を書ける時代なのだ。
当方は先月開催された日本化学会年会で、40年以上前に当方が当時の情報工学の先端レベルの方法で行った手法と今マテリアルズ・インフォマティクスで話題になっている手法との比較を科学の解を添えて発表した。
この発表の目的は、相関が期待される現象では、40年以上前の手法でも十分に現在でも通用する、ということを示したかったからである。
また、30年以上前にはタグチメソッド(TM)が生まれアメリカで普及し始めた。その後、この手法が日本に輸入されて現在に至るが、TMでは、実験計画を立案し最低限のデータ収集で知が得られることをご存知ない方が今でもいる。
TMは、単なる品質工学という意味だけでなく、技術者が基本機能を正しく定義した時に新たな知を手順に従うだけで得られる巧みな手法である。手法そのものがアルゴリズムとなっており、マテリアルズ・インフォマティクスと呼べる。
カテゴリー : 一般
pagetop