活動報告

新着記事

カテゴリー

キーワード検索

2025.04/05 AIブームと不易流行(5)

今注目されている生成系AIのアルゴリズムは、大量の知識データを用いて知識をパターン認識し推論ルールを決めてゆく自由度の高いアルゴリズムである。


ゆえに、人間に代わり自由な発想で問題解決できそうな期待を抱かせる。2006年に発表された深層学習(ディープラーニング)の手法にベーズ統計を組み合わせたアルゴリズムで動作している。


TRIZのようにあらかじめ用意された、あるいは既知のパターンとの比較参照で推論を進めるアルゴリズムではなく、大量のデータを学習して、その学習結果により判断ルールが決まり推論が行われる。


すなわち、第三次AIブームで生まれた生成系AIは、過去のAIのようにアルゴリズムで知の表現や推論が決められている動作ではなく、大量のデータを学習して動作が決まる、データ駆動と呼ばれるアルゴリズムで作られている。


繰り返しの説明になるが、あらかじめ大量の論文を学習アルゴリズムでプログラムされた学習機械に読みこませ、知識のパターンである言葉のつながりを学習させる。


学習が終了してから質問を行うと、連想ゲームのようにコンピューターが動作して回答を出す。すなわち、大量の論文データで学んだ単語のつながり、関係の強さなど知識のパターンを基に動的に決められた判断ルールにより推論して答えを出している動作が、生成系AIの「考える動作」である。



この動作は、過去の2度のAIブームで開発された、専門分野の知識をあらかじめアルゴリズムで組み立て、そのプログラムで推論させる方法とは明らかに異なる。



このビッグデータを用いた知識のパターン認識により、コンピューターの推論動作を構築する手法、データ駆動の仕組みゆえに、動作が広範囲の分野の単語に柔軟に対応でき、あたかも人間のような動作に見えるのである。

カテゴリー : 一般

pagetop