2013.08/24 科学と技術(32)
酸化スズゾルのパーコレーション転移を制御して18vol%という低添加率で10の9乗Ωcmの体積固有抵抗を有する帯電防止層を開発したが、これは特公昭35-6616という昭和35年の特許の実施例をトレースした成果である。
インピーダンスの異常からパーコレーションの閾値を評価する方法を考案するアイデアも生まれた。そのアイデアから多数の特許を出願し、改めて昭和35年に公告となった技術領域の権利を取り直した。
温故知新の典型例だが、世の中にはこれよりもすごい事例が外にもある。例えば難燃性の評価試験器のコーンカロリメータは、1917年米国のThortonが発見した酸素消費量と発熱量の関係が基になっている。60年以上経ってからこの研究成果の再確認がなされ、コーンカロリメータの開発に至っている。
コーンカロリメータは、有機物の燃焼時に消費される酸素の量1kgに対して発生する熱量が13MJとほぼ一定であることを利用し、燃焼時の発熱量を酸素センサーで求める装置である。1993年にはつくばでこの評価技術に関する国際会議まで開かれている。そして現在建築材料の規格にまで取り入れられている評価装置である。
火災という現象に関して科学的に取り組める方法を提供した装置でもある。この評価装置の面白いところは、発熱量の変化を酸素の消費量でモニタリングしているので微妙な現象の変化までうまく捉えることができる点である。温度は強度因子なので、大きな物体の燃焼物に関して温度で発熱量を推定することは難しい。発熱量という容量因子を同じ容量因子である酸素の消費量でモニターしているので評価装置として成功した。
このコーンカロリメータを用いた研究はかなり進んだようで、理想的な難燃剤の作用機構のあるべき姿まで描かれるようになった。この装置が無い時代に燃焼時にガラスを生成するポリウレタンの難燃化システムを開発したが、その時用いたのはTGAとLOIである。
大容量熱天秤という科学的に怪しい装置があったので重宝した。一般の微量で測定する熱天秤の結果と少し測定値がずれたり、重量減少のプロファイルが変化したりするが、測定原理が分かっていれば技術分野には便利に使えた。
コーンカロリメータは、大きなサンプルで実験できるので実火災で発生する現象に近い状態で難燃性の効果を評価することができる。また、その測定原理も科学的に指示される。このような評価装置では技術と科学をつなぐ重要なデータが得られる。
pagetop