活動報告

新着記事

カテゴリー

キーワード検索

2013.11/02 難燃化技術へ重回帰分析を適用した例(1)

高分子の難燃化技術を科学的に研究するときに難しい点は、実際に燃焼しているときに作用する難燃化要素の機能を証明することである。その場観察が最も良い方法であるが、高分子の燃焼時に分子が機能しているところをその場観察する手法が無い。コーンカロリーメーターでは、1917年に発見された酸素消費量1kgに対して有機材料の燃焼カロリーが13.1MJと一定である観察結果を利用して燃焼に実際利用された酸素の量を求め、燃焼挙動のその場観察に成功している。

 

発生ガスと残渣からリンの難燃化機構を推定した研究報告も30年以上前に発表されているが、その場観察の結果ではなく説得力が乏しい。このような状況で難燃化に作用する元素の寄与については一般化された理論は未だ提案されていない。ハロゲンと三酸化アンチモンの組み合わせが最も効果がありそうだ、と経験的に信じられているだけだ。

 

35年前に燃焼時の熱を利用してガラスを生成し空気を遮断するとともに燃焼面の粘度上昇でドリッピングを抑えることができないか、というアイデアを思いついた。もともとこのアイデアは、リン酸エステル系難燃剤を検討していて、燃焼後の残渣にリン原子がほとんど残っていないことに着目し考案したアイデアである。当時の論文には、リン酸エステル系難燃剤は燃焼時の熱でオルソリン酸として揮発し空気を遮断する効果がある、と書かれていた。またその効果でチャー生成を促進している、という考察まであった。

 

しかしこの考察は、ホスファゼンで変性したポリウレタン発泡体の難燃化を研究し怪しいことが分かった。ホスファゼンを使用した場合には、燃焼後も生成されたチャー面に添加量に相当するリンとして残存しているが、リン酸エステル系難燃剤の場合にリンは全く残っていない。そしてホスファゼンのリンの難燃効果をLOIの増加率で表現するとリン酸エステル系難燃剤に含まれているリンの1.3倍程度高かった。

 

すなわちオルソリン酸として揮発したリンのユニットは機能していない可能性が出てきた。むしろリンを含むユニットは燃焼時に溶融した高分子の中で機能すると効果的に作用すると考えた方が観察された現象とうまく合いそうに思われた。そこでリン酸エステルを燃焼時に燃焼系内に閉じ込める手法として無機高分子のガラスに着目し、アイデアを練り上げた。

カテゴリー : 連載 高分子

pagetop