2013.11/05 難燃化技術へ重回帰分析を適用した例(2)
ホウ酸エステルは、脂肪族のジオールとホウ酸を脱水しながら混合加熱すると容易にエステル化するが、加水分解しやすいという論文があった。加水分解しやすい材料では実用化が難しいだろうと考え、実験を行う前に分子モデルを組み加水分解しにくい構造をシミュレーションした。分子モデルなので20分もあれば1つ新規化合物を合成できる。
ジオールとしてジエタノールエミンを用いると、アミンの孤立電子対がうまくホウ素原子に配位し安定化する構造をとることがわかった。類似アミン類のモデルを作っては壊し、試行錯誤で見つけた構造だが、2mほど上から落としても壊れない。ものすごく安定だ。但しこれは丸善から発売されていた樹脂製の分子モデルキットによる考察である。
自前で購入した分子モデルキットを独身寮で組みながら、MZ80Kでインベーダーゲームをする生活は今でいう“オタク”そのものである。ただ、給与の大半をコンピューターに使ったので、これで何か有益なことをしたい、という思いはあった。またMZ80Kを購入した当初の目的も統計計算を行うことだった。諸々のことがつながり、重回帰式の偏回帰係数でホウ素の寄与率を求める実験シナリオが分子モデルを組みながら浮かんだ。
分子モデルで見いだしたジエタノールアミンとホウ酸のエステルは加水分解に対して安定なだけでなく、合成も簡単で、両者を化学量論比で混合し加熱撹拌するだけである。水を除去する必要もないことにびっくりした。通常のエステル化は脱水しなければ反応が進行しにくい。エステル化で副成する水はポリウレタンの発泡剤に利用できるので除去する必要も無い。カールフィッシャー法で定量すれば、不足分の水を追加してそのまま使用できる。
化学的に安定で合成も容易なジエタノールアミンの硼酸エステルでも問題があり、アミンのためポリウレタンの発泡反応が加速される。そのため10%以上添加しようとすると、スズ触媒を多量に添加して反応バランスを制御しなければならない。すると全体の反応が早くなりすぎて原料の混合が難しく、力学物性の良好な発泡体が得られない。アミン類のホウ酸エステルで加水分解の問題を解決できたが、扱いにくい難燃剤となった。またこの反応バランスを取る必要から10%という添加量の上限という制約が出てきた。
問題はあったが、難燃評価を行い得られたデータを単相関で評価したところ、ホウ素原子の難燃効果は小さかった。10%程度軟質ポリウレタンフォームに添加してもLOIで1から2程度の改善効果である。ばらつきも大きく、10%添加してもLOIの改善効果が見られないこともあった。しかし、リン酸エステル系難燃剤と組み合わせるとリン原子の難燃効果を安定に1.5倍程度まで高めることが可能であった。またチャー面にはボロンホスフェートが生成していること、そして添加したリン酸エステルに相当するリン原子の量が残っていることなど確認されていた。
実験計画法でも交互効果は現れていた。さらに熱分析装置を使った解析や、燃焼を途中で止めたり、窒素中の加熱実験などのモデル実験の結果では、すべてホウ酸エステルとリン酸エステルとが燃焼時の熱で反応していることを確認できた。感動したのは、モデル実験の一部のサンプルにチャー面がきらきら輝くことがあったことだ。その輝く物質のIR分析でボロンホスフェートの生成が確認された。
pagetop