活動報告

新着記事

カテゴリー

キーワード検索

2022.10/31 新QC7つ道具とデータサイエンス(2)

ゴム会社において、タイヤ開発部門と異なる組織の基礎研究所では、このようなデータサイエンスの手法を1990年代になっても非科学的とみなしていた。


例えば、電気粘性流体の劣化問題について科学的に問題解決できない、と否定証明がなされたが、データサイエンスにより問題解決された事例がある。


この問題では、市販されていた多数の界面活性剤のカタログデータを8ビットマイコンMZ80Kで走らせた主成分分析により処理している(FDOSベースであり、時間がかかった)。


解析を一晩かけて行い、HLB値の寄与率が高い第一主成分の軸と、粘度の寄与率が高い第二主成分の軸で示された象限に解決策が示された。


ところが、この結論が非科学的とされたので、解決策として示された群の界面活性剤ですぐに実験を行い劣化問題を解決して、データサイエンスの結果を実証した。


そして耐久寿命が長くロバストが高いだけでなく高性能な電気粘性流体の開発にも成功している(傾斜機能粉体はじめ複数の特許が成立しテストマーケティングもされた)。


1960年代に基礎研究所が多くの企業で組織されたが、そこではアカデミア同様に仮説の真偽を確認する実験が標準とされた。それが20世紀末まで続いていたのである。


非科学的と誤解されかねないキワモノ的技術であるMIのような研究がアカデミアで行われるようになった21世紀では、データ重視の実験方法を非科学的とみなすような風潮は無くなったと信じる。


ただし、統計はじめデータサイエンスの手法が現場のQC手法の一つとされ基礎研究担当者には興味を持たれていなかった時代がかつてあったことを研究者は知っておくべきである。


データサイエンスの手法が非科学とされ、科学的に完璧な否定証明の前に住友金属工業との高純度SiC半導体事業を立ち上げながらも転職までしなければいけなかったことを思い出すと、DXにより科学と非科学の境界が動き始めたような気分になる。


現在データサイエンスによる問題解決のオンラインセミナーの参加者を募集しています。

セミナーの詳細及びお申込みはこちら

カテゴリー : 一般

pagetop