活動報告

新着記事

カテゴリー

キーワード検索

2022.11/05 データ駆動による実験法(1)

学習を終えたAIを用いてMIを行うと、知りたかった新たな知が出力として得られる。この時、AIの各ニューロンそれぞれの関係には、多数のデータから学習した一定の重みづけが行われている。


このAIへ新たなデータを入力するとその特徴を出力できるのは、この各ニューロン間の重みづけされた関係、すなわち学習により構築された関数関係のような仕組みのためである。


ここに着目すると、次のようなデータ駆動の実験で配合設計を行う手法が考えられる。例えば、射出成形性も悪く強度の低い多成分ポリマーアロイの配合を入力として、射出成型性が改善されて良好な力学物性の樹脂を出力とする問題を考えてみる。


樹脂の力学物性について、これまでの研究開発で蓄積された形式知や経験知から諸物性の関係が知られている。この関係を学習の完了したAIとみなして実験を行えば、多成分ポリマーアロイの配合について、仮説を設定せずに技術開発できる。


ただし、この方法では仮説を用いないので、20世紀の視点では非科学的方法となる。さらに、経験知と形式知を混然と用いる方法なので、その結果は科学的に真であることが保障されない。


しかし、この方法で得られた結果に関し統計手法あるいはTMで確認実験を行えば、ロバストの高い技術が得られる。


現在データサイエンスによる問題解決のオンラインセミナーの参加者を募集しています。

セミナーの詳細及びお申込みはこちら

カテゴリー : 一般

pagetop