2023.05/03 例題2
5年以上研究開発が行われ、量産試作段階でも歩留まり10%未満の押出成形による部品があった。時折30%近く歩留まりが上がることもあったので、量産が決まったのだが、半年後には80%以上の歩留まりにしなければ、大赤字になることが予想されていた。
コンパウンドを外部の国内一流コンパウンドメーカーから購入し、押出成形を内製化しており、コンパウンドを外部から購入するサプライチェーンと配合の変更は、QMSの仕組み上不可能だった。
そのような段階でリーダー交代を引き受けた。さて、どのように問題を解決したらよいのか。このような問題では、故ドラッカーが著書に書いていたように、正しい問題を明らかにすることが重要である。
経験知から、押出成形では、コンパウンドの出来が悪ければ、絶対に良い成形体ができない、といわれているので、たとえ世界的に有名なメーカーのコンパウンドであっても出来が悪いのは明らかだった。
5年以上の開発期間で採取されたデータをデータサイエンスにより解析してみても、コンパウンドのロットばらつきが大きいことが示され(注)、コンパウンドを改良しなくてはゴールを実現できないことは明らかだった。
過去のデータを解析すると、さらに現在の配合のままでもコンパウンドの構造ばらつきを制御すれば目標の表面比抵抗を実現できることが示された。ゆえに配合処方を変更しなくても大丈夫であることは、多数のデータから確信できた。
ゆえにコンパウンドメーカーが高次構造を制御するためプロセシングを変更してくれれば、歩留まり80%以上の実現が可能と見通すことができたので、リーダーの交代を引き受けている。これはデータサイエンスの成果である。
過去データの解析以外に、プロセシングを変更した時のコンパウンドについてその高次構造も含めたゴールを明確にする必要があった。さて、どうしたらよいか?これもやはりデータサイエンスで解答を導くことが可能であり、データサイエンスによる問題解決法のセミナーでその手法を公開している。
・
(注)単相関で眺めていても気がつかない問題だった。
pagetop