活動報告

新着記事

カテゴリー

キーワード検索

2022.10/23 配合設計(3)

当方の配合設計の考え方は、技術者としてスタートした時の指導社員から強く影響を受けている。彼が、混練の神様のようなレオロジストで関数電卓を使いシミュレーションを行うような人だったから、化学系の配合屋と少し異なる。


まずプロセス条件から考えてゆく。具体的に言えば、プロセスから生じる制約条件を考慮して配合設計を行う。タグチメソッドでは制御因子の水準を幅広く設定するとよい、と指導されるが、プロセスの制約を考えず制御因子を決めるのは愚かである。


ところで、プロセスの制約から配合因子が影響を受けるケースではどうするか。このときプロセスにおける配合因子の挙動をチェックできる指標を入れた実験を必ず一水準入れる。プロセスの制約からその配合因子をあきらめるような配合設計を行わない。


こうすることにより、配合系の特徴が明確になる。データサイエンスにありがたみを感じるのは、公開されている多量のデータから自分が設計している配合系の特徴が明らかになった時である。


配合設計をいつでも新しいコンセプトで行っているとは限らない。従来の配合系を参考に設計したり、習慣に従い、比例計算だけを行いボーっと配合設計している場合もある。


アカデミアよりもアカデミックな研究所で見かけたゴム配合設計者の中には、グラフを書くためだけに配合設計している人がいたが、これはボーっと何も考えずに配合設計している人と変わらない。


ゴム配合の物性に与える影響を知っているならば、グラフを想像する前に考えなければいけないことがある。それは、ブリードアウトの問題、あるいは、物質の分散状態と拡散の問題である。


配合したい物質の機能に着目することは重要だが、その副作用を見落としてはいけない。副作用がある時にはその副作用を抑制する方法も配合設計時に考え、システム設計しなければいけない。


いろいろ考えてうまくコンセプトをまとめられない時がある。そのようなときは、データ駆動の実験を行いながら考える。例えば高純度SiC前駆体の配合設計やPETボトル再生材を80%含む樹脂はじめどこから考えたらよいのか難しい問題の成果は、50年近く前からデータ駆動の実験で成果を出している。


現在データサイエンスによる問題解決のオンラインセミナーの参加者を募集しています。

セミナーの詳細及びお申込みはこちら

カテゴリー : 一般 電気/電子材料 高分子

pagetop