「技術によって生み出された人工物に含まれている知識は、どんなものであれ科学がもたらしたものにちがいない-科学の時代と言われる今日、こうしたあまりにも安直な考えが一般的となっている。これは現代の俗説の一つであり、そうした俗説は、技術に携わる人々がわれわれの住んでいる世界を形づくるに際して、科学的とはいえない多くの決定ー大きなものも小さなものもーをしていることを無視している。日常使用している多くの物体が科学の影響を受けていることはたしかである。しかし、それらの形状、寸法、外観は、技術に携わる人々ー職人、技術者、発明家ーによって、科学的ではない思考法を用いて決定されてきたのである。」
以上はE.S.ファーガソン著「技術屋の心眼」(平凡社)の序文であります。この本はバブルがはじけた1995年に、翻訳の初版が発行されました。ちょうどコニカ(現在コニカミノルタ)へ転職して4年目の時で、酸化スズゾルの帯電防止技術を製品に搭載することに成功し、新たな製品化テーマを担当したときです。通勤電車の往復で一気に読んでしまいました。(「問題は「結論」から考えろ!」でも紹介しています。)
科学と技術は車の両輪、とよくいわれます。しかし、科学につきましては学校教育という学ぶ場がありますが、技術につきましては、就職するまで真剣に学ぶ機会がありません。また、学校教育は、教育基本法など社会標準などが決まっており、皆同じ水準の教科書で勉強しますが、技術教育は企業ごとに様々です。日本の社会の常として、転職してよかったことはあまりありませんが、技術者教育について企業に差がある、ということを学びましたのは大きな収穫、と思いました。メーカーでトップになる企業は、やはり技術者教育に力を入れている、あるいはOJTで技術者を育成できる企業である、と痛感しました。技術者を大切に育てながら、営業活動も含め均等に力を入れることのできる企業が、世界のトップ企業になれるのでしょう。
どこのメーカーでも技術者教育のシステムを大なり小なり備えているかと思います。しかし、技術者を育てていこうという風土まで企業文化の中に根づかせるには、企業トップの努力が必要です。ブリヂストンの12年間は、それを体感できた貴重な人生経験として宝の期間です。
「この会社には技術が無い」と、入社半年で退職した同期もいましたが、その彼がイメージしていた技術とは科学の世界観の科学技術でした。「カンと経験と度胸(KKD)」を豪語する先輩社員も多く、現場現物主義の徹底した風土で、科学教育を受けてきた新入社員の目に「科学技術が無い」、と写っても仕方がない会社でした。企画書を持って行くと、一読もせず、「まず、物を持ってこい」と叱る研究部門のトップがいる会社でした。軽量化タイヤのスペックを科学的に求める新入社員の実習テーマに対して、「君が考える軽量化タイヤとは、何か」、と真剣に熱く質問するCTOのいる会社でした。
一方で、充実した大学への留学制度や、学会活動、学位取得など学術を極めようとする社員に理解がある会社でした。大学への寄付など学術方面への貢献も企業活動の中で積極的に推進している会社でした。学術の限界を語り、実技の神秘性や奥深さを学術の視点と技術屋の心眼で指導できるメンターがいる会社でした。
ブリヂストンには、科学と技術が車の両輪としてうまく動いているイメージがありました。少なくとも技術とは何か、を真剣に追求する風土だったと記憶しています。科学は、学校教育も含め十分すぎるぐらい学ぶ機会がありますが、技術については学べる機会や環境が少ないように思います。メーカーが唯一の環境かもしれません。その環境は企業により大きな差があります。各企業がこれまで培った経験知をうまく伝承し、企業に貢献できる技術者を育てることができるかどうかが、今後の日本の再生を左右すると感じています。
技術者教育に関し、社会標準は無いように思われます。技術というオブジェクトが、属人的であったとしても企業のノウハウまで含んでいるのなら、標準化は難しいかもしれません。E.S.ファーガソンの著書は、技術とはどういうものか、をわかりやすく表現しています。訳者あとがきでは、核エネルギーの開発の成功は科学的思考の産物で工学的な現場感覚を軽視していることを指摘しています。このあとがきは福島原発の事故よりも前に書かれたものです。3.11以降の状態から「技術」というものを今一度真剣に考えなくてはならないと感じました。弊社は、少しでもそのお役に立てるような活動をしたいと考えています。
カテゴリー : 一般 宣伝
pagetop
「高分子材料のツボ」セミナー(以下高分子のツボ)の内容は、高分子材料技術を担当するときに覚えておくべきこと、少なくともこれだけは最低限記憶しておきたいことをまとめたものです。高分子の一次構造や、重合反応についてほとんど扱っていません。理由は、高分子の重合反応については、かなりのところまで科学的に理解されてきたからです。
実際に重合反応を100%制御できないにしても、重合様式については、ほぼ明らかになったと思っています。しかし、高分子のレオロジーはじめ実際の高分子材料の機能発現機構については、推定の域に留まっています。
2005年から2011年までの6年間、樹脂技術開発に専念することができました。社会人になって30年間疑問に思ってきた科学的成果にフローリーハギンズの理論(以下FH理論)があります。2002年にチャンスがあり、ポリオレフィンとポリスチレンを混合し、透明になる系を発見して以来、FH理論への疑問は強くなり、どんな高分子の組み合わせでも相溶できるプロセシング開発に対する思いがよみがえりました。
2005年にPPSと6ナイロンの系に出会いました。OCTAでシミュレーションしましてもきれいに相分離する系です。もし高温度でPPSと6ナイロンを相溶させて、急冷したならば非相溶系を相溶状態にできるのではないか、と考え、カオス混合にトライしました。仮説は的中し、非相溶系を室温で相溶した状態にできました。混練機の吐出部から透明の樹脂が出てきたときには感動しました。科学で説明できない現象に遭遇できる可能性があるので、技術開発という仕事は、刺激的で病みつきになります。しかし、この刺激による興奮を味わうためには、素人スポーツなどの遊びと同じく、ルールを十分に理解していなければなりません。
高分子の相溶について、高分子のツボでも扱っていますが、通常の高分子の教科書と少し表現を変えています。教科書を否定すると売れなくなるので、否定はしていませんが、FH理論に対する疑問がわくように表現しています。
高分子のツボの他の部分もそうですが、高分子材料技術に関わっている人が、まず頭の中に整理して入れておいて頂きたい内容と、疑問に思って頂きたい内容をとりあげまとめております。すなわち、高分子のツボをよく理解して頂ければ、技術開発で遭遇する現象を前に楽しむことやアイデアを出すことができるのではないかという思いで編集しております。

サンプルはこちら(Adobe Flash Player最新版がプラグインされている必要があります)
カテゴリー : 一般 宣伝 高分子
pagetop
豊川へ単身赴任した時に、高分子材料分野で頼りにできる部下が、上海の大学院を卒業し日本に来たばかりの中国人であった。現地の人事部の情報では日本語と英語が話せる、との説明があったので、引き受けたが、日本語は読める程度で会話は英語か中国語で話さなければならない状態であった。たまたま部下に中国語が堪能でモラールが高く頼りになる部下がいたので彼をメンターにした。そして、日本語学校へ中国人をすぐに入学させた。
中国語が堪能な部下は、がんばって中国人を指導してくれた。機械系が専門なので高分子材料が分からなくて苦労していたが、丁寧に業務指導ができているのは、現場での人間関係から理解できた。早く日本語をマスターさせるために、中国人には日本語で話しかけるよう部下全員に徹底したが、業務を理解しているかどうか確認するためには英会話もしくは中国語を併用してのコミュニケーションになった。
私は中国語など全く分からなかったが、この際勉強しようと中国語会話の本を買い込んだ。数冊中国語文法や中国語会話の本を購入したが、四声でつまずいた。CD付きの書籍で勉強したにもかかわらず、部下の中国人に通じなかったのだ。録音して聞き比べて見たところ、文になったときに音程を正しく取っていないことが分かった。中国語は単文で覚えることが重要と気がついた。中国語基本5文型を開発しようと考えたのはこの時の体験からです。
優秀な中国人であったので、メンターはじめ周囲の配慮も有り、半年程度で日本語によるコミュニケーションができるようになった。ただ、日本語学校に入れたはずなのに、彼の日本語は三河弁であった。
カテゴリー : 一般 宣伝
pagetop
不謹慎ですが、指導社員O氏からレオロジーについて指導を受けている時に眠くなった話から、弊社の目標まで。
ゴ ム材料はダッシュポットとバネで表現できる、といきなり始まった講義は、新鮮でした。有機化合物であるゴム材料が機械の部品で表現できるのです。分子レベルで 考えるのではなくマクロの視点でとらえて高分子物性を理解するレオロジーは、おそらく当時の学問としてピークに到達していたのかもしれない。高分子物性のほとんどが、ダッシュポットとバネでモデル化でき、数値計算で解くことができる、というすばらしい成果が得られていたのです。
しかし、マックスウェルの方程式を解くあたりから気が遠くなり、量子化学の授業風景へタイムスリップしました。なぜか卒論実験している風景も出てきます。E体とZ体の作り分けに苦労したゲラニオール、光学異性体の話と布施明のシクラメンの香り(小椋佳作詞作曲のヒット曲、ゲラニオールはシクラメンの香りの成分)がごちゃまぜになり、比旋光度の式が出てきたところで目が覚めました。O氏は会議室にはいらっしゃらなくて、人情味あふれる文字で書かれた講義録が机の上に置いてありました。
翌日から講義ではなく、演習の毎日。地獄でした。しかし、習うより慣れろ、とはよく言ったもので、高分子の一次構造を考えずにマクロ領域から考える気持ち悪さのため理論は良く理解できないが、ゴムの高次構造をモデル化し式を立てるところまで、教えられたことはできるようになりました。そこまでできるようになって、O氏は、「おそらく、君が第一線で活躍する頃には、こんなことやってないだろうな」と申され、当時のレオロジーの考え方が高分子分野で破綻する可能性をレオロジーの最前線の情報とともにお話ししてくださいました。実際に2000年頃高分子のメソフェーズシミュレータ-OCTAが登場し、高分子の粘弾性については分子1本の挙動から積み上げる試みが現在なされています。
どのような分野でも似ているところがあると思いますが、目の前のテーマを解決するためには、直前まで蓄えられている知識や知恵を総動員することが求められます。その上で新しいことを創造してゆく活動が科学の研究であり、技術の開発だろうと思います。昔の人は良かった、覚えることが少なくて、というのは亡き母の口癖でしたが、覚えた知識が新しい成果のため無駄になる、と錯覚するぐらいに最近は進歩のスピードが早くなっています。単なる情報はゴミとなって捨てられる運命ですが、知識や知恵は整理されていればいつまで経っても役に立ちます。
弊社が現在出版しています、「高分子材料のツボ」セミナー、「電気化学の要点」セミナー、各種中国語入門書、問題解決の書籍などは、単なる情報では無く、目前のテーマを解決するために必要なスキル向上をめざす内容を目標にしています。学問に王道は無い、と言われますが、弊社がめざすところは、単なる学問の王道ではなく、技術から芸術まで新しいことを創造するための王道です。
カテゴリー : 一般
pagetop
高分子とセラミックスの両方の材料について研究開発を行い、両方の材料分野の開発成果は、学会から賞を頂いております。また学位論文は、有機無機複合材料という内容です。両方の材料開発を経験した感想として、高分子の技術革新の方向について考えました。
高分子とセラミックスについては、相違点が多いですが、大局的に見ると類似点もたくさんあります。
例えば、材料物性のプロセス依存性。これは、金属も含め、材料一般に言えますが、金属よりも高分子やセラミックスは、プロセス依存性が大きいです。材料の混合から始まり、成形するプロセスまで、一定条件で取り扱ったつもりでも、できあがった成形体物性のばらつきは、金属よりも大きくなります。高分子とセラミックスでは、組成によりますが、ばらつきの大きい組成で比較しますと大差は無いです。ばらつきの小さい組成の場合には、高分子の方が小さいですが、ばらつく場合には高分子もセラミックスもおそらく同じくらいばらつき、品質安定化技術が重要になります。
ゴム材料はプロセス依存性の大きい材料です。企業を分類するときにゴム業界と窯業業界か一緒に分類されている例には思わず納得することもあります。ゴムにしろセラミックスにしろ品質管理技術が参入障壁になっている可能性もあります。
次に材料の壊れ方、破壊の様子が、高分子とセラミックスは似ているように思っています。このように書きますと破壊力学の専門家からは叱られるかもしれませんが、高分子もセラミックスも金属に比較しますと、材料の破壊についての信頼性は低いです。材料物性は総じてプロセスに依存しますので、プロセス依存性が大きいので、物性である材料の破壊に対する信頼性の低さが似てくることになるのですが、無頓着の方が多いように思います。自動車の構造材料に高分子材料が使用できる、という事実は、大きな技術革新が必要でした。
1980年代にガスタービンの部品をすべてセラミックスで作ることを目標にしたムーンライト計画と呼ばれる国のプロジェクトがあり、エンジニアリングセラミックスの技術は大幅に進歩し、オールセラミックスガスタービンエンジンの開発には失敗しますが、包丁までセラミックスで作れるようになりました。当時エンジニアリングプラスチックスは実用化されていましたから、高分子の方が技術進歩が早かったわけです。
壊れにくい成形体を作る技術として、高分子もセラミックスもある程度まで技術進歩したのですが、材料の高純度化技術という点で、高分子はセラミックスよりも遅れているように感じています。コストをかければ、高分子も高純度化できます。しかし工業製品に占める高純度材料という観点では、高分子はセラミックスに負けています。パーフェクトな単分散の分子量分布をもつ高分子とか一次構造が完全に制御された高分子とかは、工業材料に登場していません。ニーズが無いのでしょうか。光学部品には意外な恩恵があるかもしれません。またエンジニアリング分野でも信頼性向上という成果や、二律背反になっている物性を両立させたりできるかもしれません。高分子にはまだ技術革新しなければならない分野が残っているように思っています。

サンプルはこちら(Adobe Flash Player最新版がプラグインされている必要があります)
カテゴリー : 一般 高分子
pagetop
温故知新は知財分野で有益な指針となります。少なくとも材料分野では温故知新の観点で知財を眺めると新しいアイデアが出てきます。
知財の有効期間は20年ですので、20年以上前の知財から技術を探し出し、新たな視点で知財網を構築するという方法は、アイデアマンでなくとも少しの努力で多大な成果が得られます。具体的な方法は弊社の研究開発必勝法プログラムでご指導いたしますが、新技術アイデアが無くて困っているときに重宝します。
組み合わせ特許とかの問題が残りますが、20年以上前のスジのよい技術からアイデアを拝借し、新しい技術に仕立て上げる力は実務上大切なスキルです。
カテゴリー : 一般
pagetop
酸化スズゾルを用いた帯電防止技術の開発事例では、
1.科学の成果が無い時代に、経験知で「モノ」を創れる技術があった。
2.科学の成果が知られていても、経験知が無ければ、「モノ」を創ることはできない。
ということを示しているように思います。
1960年頃どのような技術があったかは、特許の実施例を検証すれば理解できます。1990年には、スタウファーらのパーコレーションの研究成果に関する書籍が販売されていましたから公知であったと思います。また、酸化スズゾルも新素材として販売されており、塗布技術も揃っておりました。
経験知も技術のカテゴリーにいれれば、1990年に存在した塗布技術は、1960年に存在した塗布技術よりも劣っていることになります。しかし、生産技術として塗布技術を捉えると、30年間の進歩は確かにありました。技術開発は進められたが、経験知は忘れ去られた、あるいは経験知を見ることができなくなった、というのが実態では無いかと思います。このような事例は、他にもあるかもしれません。
科学が進歩した時代であっても、技術が無ければ「モノ」を作れません。ゆえに科学と技術は車の両輪にいつも例えられます。科学は学術論文と教育でその成果が未来へ継承されてゆきますが、技術はどのように未来へ伝えられるのでしょうか。
どこの企業でも技術開発報告書があります。報告書で技術は未来にうまく伝わるのでしょうか。技術の継承を考慮し、報告書に工夫をしている企業もあるかもしれません。一方ISO9001の普及で、報告書は単なる技術開発の証拠として形だけになっている企業もあります。また、一般に報告書は科学的知識で論理を展開するはずですから、報告書で技術を伝えるのは、結構難しい作業になるかと思います。
E.S.ファーガソンは、その著書「技術屋の心眼」の序文で、技術に含まれる知識には科学がもたらしたものと、科学的ではないものが含まれることを指摘しております。1960年に発明された酸化スズゾルを用いた帯電防止技術は、まさにその典型であり、科学的知識など無い時代に、技術で帯電防止薄膜を完成させております。ファーガソンが指摘している、技術には科学的ではないものが含まれる事実は重要で、これをどのように継承してゆくのかというのは、技術開発で重要と思います。また、この要素が多い技術ほど独創性が高く、他社との差別化技術になるのではないかと思います。
また、技術には科学的ではないものが含まれる、という認識は重要で、この認識を持つことで、「温故知新」という古人の知恵をうまく生かすことができるように思います。酸化スズゾルの帯電防止層を科学的に技術開発し商品化できましたのは、「温故知新」によるところが大きいです。
カテゴリー : 一般
pagetop
研究開発テーマにおいて、ライバル会社の特許(以下ライバル特許)に抵触するかどうかは頭の痛い問題である。ライバル特許周辺で特許をすり抜ける技術を開発するのか、ライバル特許と全く異なるコンセプトの技術を開発し独自技術の発明をするのか、あるいは両者を並行して実行するのか悩みます。最終判断はしかるべき役職(問題の大きさ、会社の仕組みで異なる)が行うことになりますが、日本企業では課長クラスが戦略を決めて、上位職者にその承認を得るという手順になるかと思います。
課長クラスが該当技術分野でライバルより優れたスキルを有している場合ならば判断は容易だが、多くの場合には部下である担当者の意見に頼ることになる。この時、上司の立場であるいは経営の視点でテーマを考えられるほど担当者の力量が高ければ苦労はしないが、そうでない場合はコーチング力が判断を左右する場合があるので注意が必要である。
研究開発を担当していたときに、ライバル特許の問題に遭遇した場合は、まず最悪の結果と最良の結果を金額換算で描くことにしていた。大きな声で言えないが、最悪の結果において利益に影響しないレベルならば、ライバル特許周辺の改良技術で開発を進める方針に腹を決め、担当者の負担を軽くするように説明を聞いた。
しかし、利益に大きな影響がある場合には、ライバル特許と全く異なるコンセプトで進める方針で担当者に厳しく迫った。後者は担当者により新たな問題が発生する。担当者から、上司のコンセプトを聞かせろ、と逆に迫られた経験もある。コーチング力を鍛えなければ、と反省した瞬間であるが、難解で深刻な問題の場合には、あらかじめ上司の側からコンセプト例を提示しておくとコーチングも円滑に進む、とこの時の反省で学びました。部下の育成のためには好ましくない、という見解の方もいらっしゃるが、難解な問題の場合には、あらかじめ上司の側から全体の戦略まで提示しコーチングを進めた方が収穫が多い。但し、厳しい問題を扱っている、という認識を担当者と共有しなければ、上司の用意した戦略は単なる助け船となってしまい、部下の育成までには至らない。コーチング力が、単なる心理学の知識だけでかたずかない事例です。
この時コンセプトや戦略をあらかじめ用意するにはどうしたらよいか。「問題は「結論」から考えろ!セミナー」にそのヒントがあります。
カテゴリー : 一般 高分子
pagetop
問題とは、「あるべき姿」と「現実」との乖離である、と言われています。「あるべき姿」については後日述べますが、「現実」の認識のしかたについて説明します。
現実につきましては「あるがまま」を客観的にとらえることが大切です。この現実把握につきましてよくやる間違い、あるいはよく見かける間違いは、自分たちに都合の悪いこと、あるいはこうあって欲しいことに合わせて現実を認識してしまうことです。現実の状況を書き上げてゆくときに期待値を掛けて表現してはいけません。「あるがまま」を正確に客観的に表現しなければなりません。間違った「現実」認識を行えば「間違った問題」を設定することになります。「間違った問題に対する正しい答えほど無益なものは無い」とはドラッカーの言葉ですが、間違った問題解決を行ったために昨年の3月11日には無益どころかとんでもない事故が発生しました。
福島原発の事故は、防波堤を経済的に作りたいが為に津波の高さに発生確率を掛けて設計した結果起きた事故、と言っても間違いないでしょう。あるいは、津波以外でも全電源消失という事故は発生しない、と現実の状況に期待値を掛けた結果の典型例です。そもそも世界で2例大事故が発生しているのに、日本だけ原発の事故は未来永劫発生確率0%というのは科学的ではありません。最近2030年の原発稼働率を何%にするか、という問題設定がなされ議論が活発に行われていますが、この問題はそもそもどのような現実認識から出てきているのか、そこから議論しなければ間違った問題を解くことになってしまいます。少なくとも現実には福島原発が発生した事実、まだ大地震が発生する可能性が高いこと、活断層の見直しが必要なこと、そもそも燃料の最終処理方法さえ決まっていない現実、等を考えますと、早急に「あるべき姿」を決め、もっと重要な問題設定を行う必要があります。
「現実」をストイックに捉える方法として論理学を活用する方法もあります。考えようとしている事象について、「現実」に観察された現象を肯定的に捉えた場合と否定的に捉えた場合について吟味し、どちらが正しいのか結論を出す方法です。この時肯定されて出てきた項目も否定されて出てきた項目も正しい現実、あるいは間違った現実であれば、両者の和集合あるいは積集合について吟味します。隙間無く客観的に評価した「現実」の姿を問題設定の時に採用すべきです。
カテゴリー : 一般
pagetop
高分子のツボセミナーは、教科書ではありません。高分子材料を扱うときに、最低限これだけは知識として身につけていて欲しい項目だけをまとめました。高分子物理を重視し、その結果高分子重合の単元を省略しております。
40年前の大学における高分子の授業は、高分子合成化学が中心で、高分子物性については分析技術の一分野として扱われていたように記憶しています。しかし、実務で高分子を扱うときに、高分子重合に関する知識が重要となるシーンは少なくなりました。20年前にブリヂストンからコニカへ転職しましたときに、ラテックス重合を担当しましたが、商品開発を指向した研究開発現場では重合の知識よりも単膜の評価技術の方が重要でした。しかし、商品の品質と高分子材料の関係で問題が発生したときに、高分子物理を実務の視点でご指導してくださる先生の少なさに悩みました。物性評価技術は企業のノウハウ、と言ってしまえばそれまでですが、知識の整理の仕方だけでも実務寄りにして頂けると初心者にはありがたかった。実務2-3年の若い技術者を大学の先生のところへ質問に行かせても、問題解決につながるアイデアを持ち帰った確率は低く、さらに部下の力不足のせいにするにはかわいそうなこともしばしばありましたが、この問題は、大学の先生に責任があるのか、というと、大学の先生の使命を考えた場合に”?”である。むしろ技術情報を商売とするセミナー会社が生まれた背景となるのでしょうが、企業で20年研究開発マネジメントを行ってきて、大学とセミナー会社の隙間を埋めるサービスが必要と感じるようになりました。電脳書店設立の動機ですが、その思いから高分子のツボセミナーを販売しています。

カテゴリー : 一般 宣伝 電子出版 高分子
pagetop