活動報告

新着記事

カテゴリー

キーワード検索

2012.11/21 電気粘性流体と微粒子

電気粘性流体は絶縁オイルと半導体微粒子からなる流体で、電場の強度で粘度を制御することができます。電場で粘度が制御されるメカニズムは、電場0の場合には流動性を示す懸濁オイルが、電場をかけることで粒子が帯電し電極間で整列した結果、粘度が上昇し、電界強度が上がるにつれて粒子の帯電量が変化するとともに粘度が急激に上昇してゆきます。しかし電界強度が0になると微粒子の帯電が無くなりもとの流体に戻ります。このようなメカニズムです。

 

この流体の機能を発現しているのは、粒子の帯電し分極やすく放電しやすい、すなわち電気を流しやすいが帯電した時の分極も大きいという二律背反の性質です。よく知られているように金属でも帯電しますが導電性が高いために帯電量はごくわずかです。絶縁体は導電性が無いために帯電量は多く容易に分極し誘電体としての性質を示します。ゆえにウィンズロウに発見された当時は絶縁体微粒子に水を吸着させ絶縁オイルに分散し電気粘性流体として使用されていました。

 

このような絶縁体に水を吸着させた粒子は40年ほど研究されましたが耐久性が無く実用化されませんでした。急速に実用化が検討されたのは、表面に有機残渣が残った生焼けの炭素が水を添加しなくとも高い電気粘性効果を示すことが分かったからです。B社で発見されこの材料を中心に研究開発が進められました。

 

このテーマを担当するきっかけとなりましたのは、ゴムの容器に電気粘性流体を入れて用いると、ゴムに添加された材料が絶縁オイルに抽出されて電場0の時でも粘度が上がったままになるため、この問題を解決する応援技術者として駆り出されたからです。プロジェクトのメンバーに加えられたにも関わらずなぜか重要な論文や特許を少しづつ要求した時だけしか見せていただけず、同じ会社のメンバーであるにもかかわらず、奇妙な扱いを受けたことから嫌な予感がして早く問題解決しプロジェクトを離れたいとプロジェクトに加わった時に思いました。ただS社と半導体事業でJVを立ち上げる準備を進めていましたので我慢して真摯に仕事を簡単にいなし、担当して1週間程度で解決方法を提示し、1ケ月で実用化テストに入る状態まで仕上げました。弊社で販売している問題解決技術の成果です。

 

せっかく電気粘性流体のメンバーに加わりましたので、高純度SiCを開発した時に用いた問題解決法で問題を解き、傾斜機能粒子、微粒子分散微粒子、コンデンサー分散微粒子の3種類が電気粘性流体に最適という解答も出してみました。せっかく面白い解答が得られましたので傾斜機能粒子を高純度SiCの試作プラントで製造してみました。絶縁オイルに分散し電気粘性効果を測定しましたら生焼け炭素よりも高い電気粘性効果を示しました。電気粘性流体に構造制御した微粒子を用いた初めての技術でささやかなイノベーションを起すことができました。

 

このようなイノベーションを起すことができましたのは弊社電脳書店で販売している「なぜ当たり前のことしか浮かばないのか」で説明している問題解決法を用いたからですが、40年間誰も気が付かなかったのが不思議です。わかってしまえば当たり前のことだからです。40年間優秀な研究者がたくさんの論文を生産してきたわけですが、微粒子を能動的にデザインして電気粘性流体に用いたのは特許情報からB社が最初でした。

 

 

 

弊社では本記事の内容やコンサルティング業務を含め、電子メールでのご相談を無料で承っております。

こちら(当サイトのお問い合わせ)からご連絡ください。

カテゴリー : 未分類 電気/電子材料 高分子

pagetop