活動報告

新着記事

カテゴリー

キーワード検索

2014.01/24 高純度SiC(7)

前駆体を用いたシリカ還元法では、反応速度の解析により拡散律速でSiCが生じていることを示すことができた。有機物前駆体を炭化して得られた混合物を分析したところシリカとカーボンの混合物であることもわかっていた。ただシリカ粒子の大きさはナノオーダー以下(分子レベルと推定)で高解像度の電子顕微鏡観察(TEM)を行ってもシリカ粒子は見えなかった。

 

また恒温測定による熱重量分析で得られた重量減少曲線には、核生成過程と推定される重量減少が生じない時間が観察され、Si-Oの熱運動で構造が変わり、それが核に生成しているらしい様子まで現れていた。この生成した核へカーボンが拡散しCOを発生しながらSiC化してゆくのである。あるいは、拡散しているのはOやSiである、という議論も当時行っている。

 

恒温測定で得られた値、さらに精度をあげるため等速昇温測定まで行って得られた値などを比較し見積もると、400kJ/mol前後というカーボンの活性化エネルギーに相当する値が見積もられたので、この議論ではカーボンが拡散しているという結論になった。

 

この結果はSiCウェハーの製造に一般的に用いられている改良Lely法にも参考になる。改良Lely法で発生しているガス成分を調べると、SiやSi2Cであり、このまま析出したのではカーボンが不足する。しかし、反応をカーボンルツボ中で行っているので周囲にはカーボンが豊富に有り、活性化されたカーボンが拡散し結晶成長に使われていると思われる。すなわち、改良Lely法ではこのカーボンの拡散に着目したアイデアが重要で関心のある方は問い合わせていただきたい。

 

高純度SiCを有機物前駆体で製造するにあたり、その品質管理を熱重量分析で行う事を思いついたのだが、研究を進めたところSiCの結晶成長のヒントまで得られた。当時シリカ還元法のSiC化の機構では、気相のSiO生成が重要視され、カーボンを大過剰に用いるとともに、それをペレット化し、SiOガスが無駄にならないようにすることがノウハウとして知られていた。

 

しかし、新たに考案されたフェノール樹脂とポリエチルシリケートから製造される有機物前駆体を用いるとシリカとカーボンが化学量論比において反応させることができる。さらに従来法で悩まされていたウィスカーの副生も無い。3Cタイプの結晶だけを選択して製造することが可能である。

 

さらに分子レベルのSiCが分散したカーボンまで合成することが可能で、これは改良Lely法の最良の原料となる。面白いことに1700℃以上2000℃未満では、3Cのみ生成する。ただしこの温度領域でできる結晶の最大粒径は、4時間反応させても500ミクロン前後である。

 

カテゴリー : 一般 連載 電気/電子材料

pagetop