ソフトバンクが東京ガスから供給を受け、ガスを販売するという。それも5%程度の割引価格である。さらに携帯電話ユーザーには5%の割引がある。
かつて、オール電化の掛け声でガス業界は将来の事業を心配した時代があった。2000年前後には東京ガスは、ガス発電システムの販売を発表している。ゴリラが出てくるあのCMも当時の東京ガスの活動の延長線上のキャラクターである
ところが数々の災害で電気のインフラが脆弱であり、ガスインフラが意外にもタフであることが分かってきて、オール電化の勢いはどこかへ消えた。
ご存知のように東京では災害対策のために無電柱化、すなわち電線を地下へ埋設する事業を展開しているが、町を見ればわかるように主要道路でさえ不十分な状況だ。
20年以上の間にガス発電システムはかなりの普及をしている。新築の家で太陽光発電システムを導入しているところはエネファームを同時に取り付けている例を近所で見かける。
電力自由化で余剰電気を個人が販売できるようになったためで、分散発電システムが稼働し始めた。おそらくガス発電システムは、これからも需要を開拓してゆくと思われるが、そうなると今度は電力会社の事業が心配になる。
その昔、IBMは大型コンピューターのリース事業で急成長したが、インターネットを待たずして、マイコンの普及による計算業務の分散処理が進み成長が止まった。それと同じように電力会社は原子力に頼っているとその事業は大型コンピューターと同じ末路になる。世の中は分散処理へ向かう、という人間社会の流れが新しい経験知として生まれた。
カテゴリー : 一般
pagetop
金曜日に公開したペルチェ素子を用いた空調服を開発した話の続編。この製品は5年前に企画されたらしいが、特開2020-97799が出願されている。弊社に顧客が相談に来られたのは昨年でこの特許の公開後である。
この特許は単なる町の発明家程度のアイデアであるが、この特許に基づき空調服を作成し評価したところ冷えなかった、それで弊社にご相談に来られた、という。
ペルチェ素子をご存知の方が特許を読めば、特許技術では体を冷却できないことをすぐに理解できる。熱伝導の機構を理解していない内容である。しかし、それでも製品を試作して確認しているところがすごい。
顧客はこの特許の出願人の一人で弊社に相談に来られた時に、この発明の何が問題なのかその場で解説し、コンサルをスタートしている。当方はインターネットでペルチェ素子を購入し、すぐに改良技術で実験を始め改良技術の成功を確信した。
そして昨年5月には、お客様がその技術ですぐにプロトタイプを作って評価して、冷えなかった空調服が冷えるようになったのでびっくりされた。そして某展示会にそれを出品し高い評価を受けたという。
相談されて実験を開始し3か月で技術ができたことになる。これまでの技術開発の経験で、3か月あれば何らかの結果を出せる自信があった(注)。
サラリーマン時代には大企業で実験環境が整ったところでの3か月だが、今回は実験環境をまず立ち上げる必要があったが、それでも3か月の完成である。老体に鞭打って実験環境を作り、特許出願までこぎつけた。
現在3件の特許出願を行っており、そのうち1件は出願時審査請求を行っている。本空調服に関心のあるかたは弊社へお問い合わせください。熱伝導の新コンセプトに基づく技術を紹介いたします。
(注)ゴム会社の新入社員の時に初めて担当した樹脂補強ゴムは、3か月で実用的な基本処方を開発している。その後担当したホスファゼン変性ポリウレタンフォームでは3か月で工場試作ができるレベルの配合を完成している。そして2か月後工場試作を行い、成功して始末書を書いている。この始末書に書いたホウ酸エステル変性ポリウレタンフォームは3週間で試作レベルの処方ができた。高純度SiCの発明では、実験開始から3日で99%以上の純度の真黄色のSiCが製造されている。お手伝いで担当した電気粘性流体の耐久性の問題は一晩で技術を見出している。一晩の実験で見つけた界面活性剤を添加しただけで耐久性が著しく向上した。なお「界面活性剤では電気粘性流体の耐久性問題を解決できない」という否定証明の報告書がこの時出されていたことなど知らなかった。どのような科学的に完璧な否定証明でも「できる」という事実でひっくり返ることをこの時学んだ。ゴム会社で研究開発必勝法を作り上げたが、それにより開発速度が加速度的に上がることを実感できた。写真会社では、6か月後には製品を完成しなければいけない状況で引き受けた仕事で、成功している。この時は3か月でカオス混合プラントを立ち上げ、テーマ請負後3か月後に6ナイロンがPPSに相溶したフローリー・ハギンズ理論で説明できないコンパウンドを生産開始している。
カテゴリー : 一般
pagetop
50年ほど前に耐熱性高分子の研究が盛んに行われた。そして一次構造の耐熱性への寄与について結論のようなものが出されている。ここで「ような」と書いたのは、一部研究者により見解が異なる点があるからだ。
そもそも耐熱性高分子と言っても空気中における耐熱性なのか、非酸化雰囲気における耐熱性なのかにより視点が変わる。空気中の耐熱性であれば耐酸化性を考慮しなければならず、不飽和構造は酸化されやすいので非酸化性雰囲気で耐熱性が高いと判定されても空気中では耐熱性の順位がさがる。
ゆえに耐熱性高分子と簡単に表現してもどのような高分子を耐熱性高分子と呼ぶのかは、「耐熱性」の条件により変わってくる。簡単に耐熱性高分子について論じることができない。
さらに一般使用の状況を考えたときに、ガラス転移点(Tg)が耐熱性の指標となる場合もある。例えば高分子構造材料では、Tg以上で緩和速度が上がるので、Tgの高い樹脂が選ばれたりする。
食洗器で洗浄可能なプラ容器かどうかはこのTgで決められている場合がある。すなわちTgが70℃以下の材料でできた容器を食洗器で洗浄すると変形する。但し、Tgが70℃以下でも一部架橋構造の導入された樹脂であれば変形しにくい。
この架橋構造も食洗器レベルであれば、結晶構造がその役目をできる。ただしこの時には結晶の融点が高く結晶化温度が十分に低い必要がある。
耐熱性高分子の開発は40年ほど前まで盛んに行われたが、以上の問題もあり研究は下火になっていった。また、当時の研究成果でも耐熱性=燃えにくさと一般化できないことも分かり、燃えにくい高分子の研究は難燃剤の開発へ中心が移動した。
カテゴリー : 一般 電気/電子材料 高分子
pagetop
フェノール樹脂は耐熱性高分子として、合成樹脂の登場初期から活用されてきた。それゆえ燃えにくいだろうと誤解されている人も多い。
燃えやすさ燃えにくさの指標として極限酸素指数(LOI)がある。LOIは酸素と窒素の混合空気中の酸素濃度を指数として表現した数値で、21より大きい材料は燃えにくく、21より小さい材料は空気中で燃え続ける。
ちなみに、21という値は、空気の組成をLOIで表現した時の数値である。この数値でフェノール樹脂の燃えやすさを表現すると、製造条件によりLOIが19から38以上まで大きくばらつく。
すなわち、耐火性が高いと思われているフェノール樹脂も、製造条件が悪ければ空気中で燃えてしまう材料となる。ただし適切な製造条件が選ばれ管理された状態で製造されたフェノール樹脂ならば大変燃えにくい樹脂となる。
フェノール樹脂には酸触媒で硬化させて樹脂を製造するレゾール型フェノール樹脂とアルカリ触媒で硬化させるノボラック型フェノール樹脂の2種類存在する。いずれの樹脂も触媒量と製造条件が不適切であれば空気中で燃えやすいフェノール樹脂となる。
この燃えやすいフェノール樹脂と燃えにくいフェノール樹脂の差異は、三次元化した割合の違いで現れることが50年近く前にパルスNMRと熱分析を組み合わせて明らかにすることができた。
すなわち、一次構造が線状に長く伸びているような部分が多いフェノール樹脂は、燃えやすく、一次構造が分岐し網目を形成するように伸び、自由体積と呼ばれる部分が少ないフェノール樹脂は燃えにくいことが明らかとなった。
カテゴリー : 一般 電気/電子材料 高分子
pagetop
世の中には、科学的に矛盾する二つの現象について二律背反と言う言葉があり、それを両立することは不可能と結論されてきた。表題も熱伝導の仕組みをご存知の方であれば、両立するのは二律背反で不可能と一笑に付されるかもしれない。
すなわち、熱伝導性の高い材料は、それゆえ熱が逃げるのも早く、熱しやすく冷めやすいのが科学の常識である。冷却であれば、冷やしやすくすぐに常温にもどる材料となる。
電子伝導では、半導体材料が帯電防止分野や複写機などで実用化されている。この半導体材料は、その導電性領域をうまく制御してやると、帯電しやすく電気を流しやすい材料とすることができる。
絶縁材料は誘電体と呼ばれ帯電しやすいので、電気分野では二律背反を実現する材料が存在する。これは科学的に解明されていないが、いくつかの実験、すなわち当方の経験から、帯電は直流的な現象であり放電は交流的な要素が機能するためと理解している。
帯電しやすく放電しやすい材料はトナーを用いた電子写真システムでは重要な機能であり、科学的に未解明なところがあっても技術が進歩してきた。
しかし、熱については密閉状態にすれば、すなわち内部の気体を外部に出ないようにすれば冷却後の保冷は可能となるので、冷却しやすく保冷もしやすい材料はニーズが高くなく技術開発されていなかった。
加熱機器では、オイル循環装置が加熱しやすく保温機能も持っているので、一応熱現象の二律背反を実現している技術とみなせるが、空調服でこの仕組みを取り入れると宇宙服のようなスタイルとなってしまう。
もっと簡便に熱伝導の二律背反技術を実現できないかと考えて、実験を行い昨日の発明にたどり着いた。この発明により1着3万円前後の空調服を実現可能で、プロトタイプができておりこの技術にご興味のある企業は弊社へ問い合わせていただきたい。
カテゴリー : 一般 電気/電子材料
pagetop
この数年で形成された新マーケットとして空調服がある。暑い夏の工事現場を涼しくする服として、扇風機付きの空調服が開発された。改良が進み現場作業者以外にも使用されるようになった。そして大ヒットしNHKでも取り上げられた。
ただ、この空調服のなきどころは、扇風機で外気を体の中に送る仕組みであり、ホコリっぽいところでは体に埃を吹き付けることになる。さらに、このコロナ禍のシーズンでは、コロナウィルスを吸い込むような仕組みとなっている。
本当にウィルスを吸い込んだかどうか知らないが、ただ扇風機をつけただけの仕組みで大ヒットしたならば、ペルチェ素子で冷却したら面白いだろうということで、発明がなされ特許が出ている。
しかし、なかなか製品が出てこないと思っていたら、ペルチェ素子で冷却しても期待通りの冷却が難しい、ということで開発がとん挫していたようだ。実は昨年この発明者が相談に来られたのだが、実物を前にして相談内容を聞き、公開されている特許のままでは実用化できないことがすぐに理解できた。
そこで新たな特許を3件出願し、当方のアイデアと実験結果を基にプロトタイプを組み立てたところ気持ちよく冷えた。ペルチェ素子を大きくすればガンガン冷えることは理解できたが、この大きさでこの気持ちよさからこれ以上改良しない方が良い、と感じた。
ところが、である。相談者の主たる事業がコロナ禍で資金繰りが悪化し、一時は弊社への支払いも滞り、結局今年の夏の商品化ができなかった。来年にむけてどうしようか、という相談をしているところだが、弊社としては開発費を回収したいので、この空調服を事業化したい人を探している。詳細は弊社へご連絡してください。
なお、本件は相談者も了承済み事項であり、事業化に際してはすべて弊社一任となっております。弊社では、今月先着順に弊社事務所で技術を公開したいと思っています。特許はまだ公開されていないので、周辺特許出願のご希望に沿うことが可能です。
カテゴリー : 一般
pagetop
昨日の話にどうしたら努力できるのかと質問を頂いた。コビー氏ではないが、努力を習慣化すればよいだけであるが、いくつかコツがある。
ここでは一つだけ紹介する。「自分をほめてやりたい」とは有森氏の言葉だが、この言葉の持つ意味と奥深さは相当なものがある。また、有森氏が言った言葉ゆえにその意味の膨らみも大きい。
「努力しても成功するとは限らない」は内村氏の言葉だが、人生の価値は出世や仕事の成功だけではない。むしろ出世など長い人生を思うとあまり意味が無い。例えば先日判決が出た池袋母子ひき殺し犯は、ネットで上級国民と騒がれたりしたが、裁判の過程における発言や態度を見る限り、人間としての良識を欠いた人物だった。
当方のFDを壊した犯人もそれなりの役職の人物であり、その事件を隠蔽化したのは研究開発本部を統括していた取締役と聞いている。自分の出世のために他人から成果を奪って生きてゆくサラリーマン人生にどれだけ価値があるのだろうか。
組織を離れれば、その人の人生の積み重ねで生きてゆくことになる。その一部に他人の業務妨害までして出世しようとした歴史が残ることは恥ずかしくないのか。当方の研究成果を勝手に論文にした大学の先生もそうである。
ご自分が全く関与していない研究の成果だけを奪い論文を書く、そこまでして研究者としての立場を守りたいのだろうか。またそのようにして守られた人生は、空しくないのだろうか。一度出版されれば永遠に証拠として残ってゆくのだ。
確かにポリエチルシリケートとフェノール樹脂を前駆体とした高純度SiCの研究は、それを自分の成果のようにして学会賞を狙う人物まで出てきたように第三者から見て素晴らしい発明だったのだろう。
当方はこの発明を徹夜や休日返上した過重労働によりたった一人で成果として出している。そして、この成果について何ら報償を受けていない(注)。FD事件を隠蔽化されて退職したゴム会社から特許報償も受けていない。住友金属工業との共同出願特許が成立しており、少なくともこの事業報償があったことを理解していてもである。
死ぬほどの努力をなぜしたのか、と聞かれたことがある。その時「生きるため」と答えている。知識労働者として生きるために知識を獲得する努力は、人間の基本3欲求と同様に重要である。
(注)窓際となり豊川へ単身赴任したその日に無機材研でご指導いただいた総合研究官からお手紙を頂いた。ゴム会社では信じてもらえなかったポリエチルシリケートとフェノール樹脂の均一混合されたポリマーアロイを用いた高純度SiC合成法を実証できるチャンスをくださった方である。基本特許は無機材質研究所から出願されたのだが、その時この方がゴム会社から頂いた特許報償をすべて小生にくださる約束を言われた。小生はお気持ちだけで十分とお答えしたが、その方が退職されるときに当時の思い出とともに激励の手紙を小生に下さった。写真会社へ転職し一番つらかった時に頂いたこの手紙が起爆剤となり、カオス混合装置が発明されている。努力を見ていてくださる人が必ずいるのだと確信した。世の中には悪人ばかりでなく神様のような人もいる。
カテゴリー : 一般 宣伝
pagetop
昨日の日刊スポーツ電子版に内村航平氏がオリンピック会場から去った訳を語っていた。そこで彼は「努力しても成功しないことがあると経験した」と、ものすごいことを語っていた。
当方など努力の塊が人生のような生き方をしており、高純度SiCの発明のような成功もあるが失敗の数は多い。また今の彼よりも若い18歳の時に一度大きな挫折をしている。当方の人生の失敗談など価値が無いかもしれないが、昨日の彼の失敗談は一読の価値がある。
「努力は裏切ることもある、その事実に受け身で甘んじるつもりはない」と語る彼の話は、やはり卓越した天才であることを理解させる。
凡才の人生を生きてきた当方ならば、「努力は報われるとは限らない。報われないことの方が多いかもしれない。しかし、一生懸命努力した結果の失敗であれば、必ずそこに成長がある。それを楽しみに努力したい。」
内村航平氏は、彼の言葉から想像するに、まだ挑戦者である。当方は、さほど大きな成長を望めないことが分かっていても毎日ギターの練習をしている。ここで一生懸命努力するのはボケ防止のためである。
スポーツ選手ならば、早い人で25歳から能力の低下が始まる。フィギュアスケートでは25歳前後で皆引退している厳しい世界である。知的労働者は努力しなければ、40歳から能力の低下が始まるかもしれない。
あの孔子は40にして惑わず、と言っている。15歳から学び始めて40で悟りをひらいたと説明されているが、おそらく学ぶ努力を辞めたのだろう。サラリーマンは少なくとも定年まで学ぶ努力したほうが良いように思っている。
学ぶ努力は第三者が見て価値のない趣味でもよい。当方は努力の価値もないようなギターの練習を始めたが、若い時には挫折して楽譜の最後まで弾けなかった「禁じられた遊び」をようやく弾けるようになった。
練習を始めて50年弱である。途中まったくギターを弾いてなかった期間が40年以上あるので弾けるようになるまで少なくとも5年程度はかかった計算になる。
若い時にできなかったことが、この年でできるようになった感激は、高純度SiCの発明をしたときと同じような興奮を覚えた。そしてコロナ禍前よりも頭の回転が速くなってきた実感がある。練習後の首の運動で首の回転が楽になったのである。
カテゴリー : 一般
pagetop
身の回りのゴムや樹脂は、高分子だけで作られているケースは稀である。また、高分子は分子量分布を持っているのでそれ自身が多成分系であり、分子量が1000未満のオリゴマーが可塑剤の働きをしている場合も存在する。
ゴムや樹脂は、加工性や使用される条件に合わせるために耐久性を上げる必要から各種添加剤が使用される。そのために配合設計技術が重要になってくる。
コンパウンド開発や部材開発を行っている企業では、伝統的な配合設計技術が存在している。当方が写真会社へ転職した時にも塗布液の設計方法についてノウハウが存在した。
しかし、その設計方法が今の時代にも合理性を発揮しているとは言い難い例もあるので、環境問題解決が必須となった現代において見直しをするには良い機会ではないかと思う。
20年以上前のことなので問題ないと思うが、塗布液の配合設計において必須の添加剤が存在した事例を紹介したい。その添加剤は塗布された後に無害となるが、化合物単体では環境適合性がない素材だった。
当方はこの化合物の使用を禁止したいと思ったが、担当者から不可能と言われた。PETの表面処理には必須の素材だという。確かにその化合物の構造から機能性を十分に理解でき、コーティング用には不可欠との説明を理解できた。
それでも、当方が心配したのはその化合物が使用禁止となった時に新たな技術開発をしていては遅い、と言う問題である。環境問題とは、企業にとって突然死を宣告するような事態を招く問題である。
伝承されていたその化合物の機能性について異なる視点で見直し、新たなコンセプトの技術を担当者に提案してみたが採用されなかったので、自ら実験を行いその有効性を確認した。
この新たなコンセプトを実用化するために現場の説得も必要となり時間がかかったが、伝統的な配合設計技術を新たなコンセプトの設計技術に転換することに成功した。しかし、10年近くかかった。
配合設計技術は長い間伝承されてきても時代の進歩に合わせて見直す必要がある。しかし、その刷新には時間がかかる。一因として市場の問題を恐れる保守的な考え方があるが、今はロバストを検証できるタグチメソッドという方法がある。当方の新たなコンセプトもタグチメソッドを使用し実用化されたが、ロバストは従来技術よりも高かった。
カテゴリー : 高分子
pagetop
当方の時代に大学4年までの授業のカリキュラムにおいて高分子の教科書は、高分子合成に関するものだけで、高分子物性については自分で学ぶ以外に接する機会は無かった。大学院でレオロジーに関する外部講師による特別講義が唯一の高分子物性論であり、その時は数ページの印刷物が大切な教科書だった。
高分子合成に関しては2種類のタイプの教科書があり、一つは純粋に高分子合成法についてだけ書かれており、他の一つは高分子物理に少し近づいた内容で高分子ブレンド系の話が出てくる。ただし物性論まで展開されていない。
日本人の著者によるこの本は、フローリーの高分子とポリマーの総説の良いとこどりをしたような教科書だった。予定外で大学院に進学した時に、心を入れ替え2年間必死に勉強しようと無機の講座に進学したにもかかわらず、高分子の勉強を独学していた。
ゆえに大学院までの6年間に購入した高分子の教科書は10冊を超えており、無機化学の教科書よりも多い。大学院で高分子の教科書を買いあさったのは、高分子を十分に理解できる教科書が無かったからだが、それは当方の頭の悪さだけが原因ではなく無機化学の教科書よりも体系的でなかったため、わかりにくい教科書が多かったためだと思いだされる。
無機化学は結晶と熱力学の体系で相分離現象まで合成から物性までうまくまとめられており理解が容易だったが、高分子の教科書ではその構造と物性について当時はまだわかっていないことが多かったため仕方がなかったかもしれない。
学部の授業も無機化学の先生は優秀にみえて、高分子の先生はどこか頼りなげな先生が多いように思われた。無機の講座に進んだ原因でもあるが、高分子の教科書をいろいろ集めて学んでみてもフローリーの教科書以外はわかりにくかったので、授業が分かりにくかったのはあながち講師の力量ばかりではなかったのかもしれない。
無機化学の講座で学びながらも就職先に選んだ会社はゴム会社で、面接官に何をやりたいか聞かれ返答に困り、「社長をやりたい」と応えている。この答えが良かったかどうか知らないが、採用されて研究所へ配属された。
そこで出会った指導社員は、今日まで含め当方にとって最も優れた高分子科学の先生である。たった3か月間だったが、毎朝9時から12時まで座学で午後は自由時間となった毎日の生活はゴム漬けであり、「指導社員から学んでも無駄知識となると言われた」ダッシュポットとバネのレオロジーはじめ高分子の構造と物性の当時最先端の知識を伝授された。
自由時間はバンバリーとロール、粘弾性装置、テンシロンを自由に使うことができ、学んだ知識をそこで確認することができた。1年のテーマをサービス残業の繰り返しにより3か月で仕上げることができたが、学んだ知識を展開してまとめた防振ゴム用樹脂補強ゴムの報告書は卒業研究のようなレポートとなった。指導社員からそこまで仕上げなくても良かった、というお褒めの言葉を頂いている。
カテゴリー : 一般 高分子
pagetop