タグチメソッドは難解だという誤解が多い。これは分かりにくい説明書や指導方法にも原因がある。すなおに現象へ対峙すれば、自然とロバストを高めることの重要性に気づく。
この気づきを促すような説明が重要で、弊社ではそこに力点を置いてタグチメソッドを指導している。タグチメソッドの考え方を理解できて、実験を行おうにも、そのあとの計算が難解だと思われている。
確かにSN比の計算だけでなく、制御因子の各水準における値をまとめる作業は煩わしい。しかし、Pythonを使えば簡単である。
弊社では、受講者の希望日にタグチメソッドにPythonを導入するセミナーを開催しているので、問い合わせていただきたい。そのとき、事例として、SN比計算プログラムや、タグチメソッドの実験整理のプログラムを配布しています。
この配布しているプログラムを参考に、タグチメソッドの実験前にPythonのプログラムを実験ノートとして作成する方法を指導しているのだが、受講生からAIを使ってプログラムの自動生成ができない、という相談を受けた。
そこで、今それを検討中ですが、月末に再生材に関する国際会議の招待講演者となっているので、その準備で忙しく対応できていない。
しかし、この相談内容は面白いので年内には回答できるようにしたい。その前に、弊社の「Pythonで理解するタグチメソッド」を受講されることをお勧めする。
このセミナーでは、タグチメソッド初心者あるいはまったくそれを知らない人でもPythonを中心にご指導している。大変分かり易いセミナーと評判です。セミナーで使用したプログラムも無料配布しています。是非お問い合わせください。
カテゴリー : 一般
pagetop
高分子の燃焼において高分子試料で起きている現象は酸化だけではない。熱による溶融、熱による分子の断裂やラジカル発生、緩和など様々なことが発生する。
燃焼試験において、これらの変化が劣化させるように作用する場合もあれば、良い方向に作用する場合もある。例えば熱により変形が生じた場合に、ULーV試験では異常燃焼を誘起することもあり、たいていは悪い方向に働く。
実火災では、高分子材料がどのように火源と対峙するのか、その予測は困難であり、それで高分子材料の用途ごとに難燃規格が決まっているのだが、材料メーカーの立場で困るのは、それが成形体を対象としている規格であることだ。
すなわち、材料だけで難燃化規格の合格を保証することができない。難燃剤に至っては添加量の問題もあり、それが難燃剤であることを仕様に示すのは難しいはずである。
しかし、難燃剤として使用された実績があると、それを難燃剤として販売しているのが実情である。ここで問題が出てくるのは、リンやハロゲン系化合物以外で難燃剤として販売する場合である。
例えば、水酸化アルミニウムは、稀に30%以下の添加で、高分子を難燃化できたりする。これは他のフィラーとの交互効果が効いていたりする場合であるが、この事例から難燃剤として仕様に書くのはどうかと思う。
水酸化アルミニウムは、50wt%以上添加しなければ多くの高分子で難燃効果を発揮しない。これだけの添加量になってくると、成形体の燃焼時に高分子の変化に影響を与える。
良い方向に効果を発揮しているケースが多いので、水酸化アルミニウムは難燃剤としても知られるようになったのだが、その難燃化機構は、水の揮発による冷却効果として説明されたりしている。
ならば水酸化マグネシウムや酸化スズゾルも効果があるだろうと実験をすると、水酸化アルミニウムほどの効果が出ない場合もあれば、水酸化アルミニウムより少ない添加量で効果が出たりする。
40年以上前、高分子の熱による変化に着目し、これらリンやハロゲンを含まない化合物について、難燃効果を調べた経験があるが、仮説設定して実験を行うと、皆否定証明の結果となった。科学に対して大きな疑問を持つようになった原因の一つ。
カテゴリー : 一般 高分子
pagetop
2022年に再生材とバイオポリマー促進に関する法律が施行され、今月広州では再生材に関する国際会議が開催されるという。その招待講演者に選ばれたので、改めて文献調査などを行ったが驚いた。
某大学の先生が当方のカオス混合類似の装置を使いながら、その先生の発明のようなことを書いている。この分野で真っ先に引用しなければいけないウトラッキーの文献さえも引用していない。
さらに、二軸混練機だけでは再生材の強度は低いが、その先生の発明による装置を使うと強度が上がるという論文をWEBでも堂々と公開しているが、その強度アップの原因に関する考察が間違っている。
論文は著名な雑誌ではないので、調査も不十分ないいかげんな論文でも掲載しているのだろうけれど、日本のアカデミアはここまでレベルが下がったのか、と愕然としている。
一応大学教授らしいが問題だと思っている。誹謗中傷ではない。やはりアカデミアから発表される論文は、先行技術など十分調査したうえでの研究論文であるべきと思っている。
カテゴリー : 一般 高分子
pagetop
高分子には様々な添加剤が添加され、コンパウンドとして提供されている。透明性が要求される光学用レンズ材料でさえも数種類の添加剤が入っている。
この添加剤の中には、目的が不明の場合もあることをご存知か。ゴム配合技術を新入社員の時に習ったが衝撃的なことを教えられた。何故添加しているのか不明の添加剤があるというのだ。
その添加材を入れなくても物性変化はないが、耐久寿命が変わるので、寿命に効いている、と言われているが、そのメカニズムが不明という。
ただし、その添加材を抜くと寿命試験で短くなる結果が得られるという。当方は不思議に思い、一度その添加材を抜いてみたところ、物性も耐久性も何も影響が出なかった。
しかし指導社員からコストダウンの目的でもない限り、抜かない方が良い、と言われた。理由は、現場でも知られており、その添加材が添加されていない配合は信頼度が低くなるかららしい。
同じような問題が写真会社に転職した時に発生した。エポキシ基を持った添加剤である。接着剤によく使われる分子構造であるが、発がん性のある化合物が多い。
これを廃止する企画をしたが、最初はゴム会社と同様の理由で没になった。そこで、多層塗布における接着について基礎研究を進め、各層の弾性率と応力分布の関係等基礎的事項について研究成果を積み重ね、この化合物が無くても十分な接着力を出せる手法を開発した。
その結果、この添加剤を抜くことができたのだが、これは、科学的に証明できたので周囲の理解が得られたのだが、大変な作業であった。
カテゴリー : 高分子
pagetop
科学は論理学の完成により誕生した、と言われている。おりしも産業革命が始まった時代であり、科学という哲学は、社会で歓迎された。おそらく猫も杓子も科学という考え方を身に着けたいと思ったに違いない。
探偵小説の誕生がそれを表している。名探偵ホームズは一躍スターになっている。彼の事件解決のスタイルそのものが科学的であり、読者はこの本で科学の姿勢を学んだ。
ホームズは、ベーカー街にある事務所で助手のワトソンと仮説を練り、事件解決に動き出す。そして仮説が外れたり、不十分な仮説と反省するとベーカー街に戻り、再度仮説を練り直す。
まさに科学の姿勢そのもので分かり易い。読者はホームズの仮説を練る過程で一緒に推論を展開し、犯人を予測する。当方は探偵小説を読むときに、いつも最後から読んでいた。
ゆえに、刑事コロンボが放映された時に、この番組は当方のツボにはまった。この番組では、まず事件のすべてから始まる。すなわち視聴者は、犯行現場だけでなく、犯人の心理状態からすべて情報を知ったうえで、刑事コロンボの活動を見ることになる。
刑事コロンボは、ホームズのように科学的に忠実に事件解決に当たらない。なぜか、偶然犯人とすれ違ったり、彼のかみさんの話が飛び出したりするのは、水戸黄門のご都合主義のようでもあるが、それも面白い。
とにかく、コロンボは科学に拘らず、ありとあらゆる方法で推論を展開し、時には、緻密ではない推論を完成させるために、犯人しかわからないトリックを仕掛け、犯人逮捕したりする。
日本では違法なのだが、アメリカでは許されるらしいが、この非科学的工夫を駆使して犯人逮捕する過程を視聴者は楽しむことになる。ゆえに名探偵ホームズよりも数倍面白い。ちなみに、このようなスタイルを倒叙探偵小説と呼ぶ。
カテゴリー : 一般
pagetop
様々な問題解決法が20世紀に登場したが、オブジェクト指向ほど合理的な問題解決法は無いように思う。何が合理的かというと、問題を解析してゆくと、それが答えとなってゆくからである。
プログラミング言語の手法として考え出された方法だが、問題解決でも有効に機能する。そもそもプログラミングのアルゴリズムを考えることは、問題解決をしていることなのだが。
最近データ指向という言葉が登場したが、オブジェクト指向と同じで、オブジェクトとしてデータオブジェクトを独立して扱おう、という考え方である。
50年前、データは単なる数値だった。それがオブジェクト指向の登場により、単なる数値ではなくなったのだが、このあたりを理解できていない人が多い。
もし、50歳未満でデータオブジェクトの意味が分からない人がいたならば、勉強不足と思っていただきたい。この年代から生活の中にオブジェクト指向が入ってきたからである。
もっとも当方が転職した時に入社した新入社員でワープロを使ったことが無い人がいた。さらにウィンドウズ95の時代の新入社員でエクセルを使ったことが無い新入社員がいた。
面白いのは、ワープロを知らなかった新入社員は何とか救済できたが、エクセルを使ったことが無かった新入社員は、その後も仕事ができず残念な技術者生活を送っている。
時代とともに人類は進化しており、学生時代にワープロやエクセルを知らなくても良かった時代は終わったのである。オブジェクト指向という用語も同じであり、50歳未満でご存知ない方は、こっそりと休日弊社のセミナーを受講されることをお勧めする。ご相談ください。
カテゴリー : 一般
pagetop
ある日突然高分子製品が壊れた経験は無いだろうか。例えば樹脂製のフックが壊れたり、パンツのゴム紐が伸びきった状態になっていたりする故障はクリープが関係している。
金属やセラミックスのクリープの多くは拡散クリープとして説明され、その寿命予測も実験室結果をうまく再現できる設計が可能だが、高分子のクリープ問題は悩ましい。
何故なら、科学で解明できていないからである。ただし、現象の幾つかは再現よく現れ、技術として問題を解くことが可能で、その解に沿って品質管理を行えば、品質問題を回避できる。
すなわち、トランスサイエンスとして扱う知識があれば、製品設計が可能と言える。もちろんこの時はロバスト設計が基本となり、タグチメソッドを使用する。
ゆえに高分子の破壊問題では、タグチメソッドが不可欠であるが、タグチメソッドをご存知ない方はお問い合わせください。Pythonのプログラム付でご指導するので、すぐに実験で活用できます。
タグチメソッドのセミナーにつきましては、「Pythonで学ぶタグチメソッド」をお勧めします。セミナーは1人でも開講いたしますのでお問い合わせください。複数受講の場合にはサービス価格でご提供いたします。
カテゴリー : 一般 高分子
pagetop
9月末に広州で再生材に関する国際会議が開催される。樹脂再生材と言えば中国で、広州のヒルトンホテルで開催されるのだが、日本化学会や高分子学会の会報には案内が無い。
中国では10年以上前から国際学会や展示会が多く開催されるようになった。しかし、ほとんどが日本国内で告知されていない。展示会は、中国国内企業が大半のようで、それを見学しても海外企業は展示会の業界で知られている企業以外展示していない。
しかし、日本では告知されていなくても中国の産業動向を知るには勉強になる。8年ほど前の炭素繊維複合材料の展示会は、国際という冠は無く中国企業だけの展示会であったが、結構大規模な展示会であり、中国において炭素繊維複合材料に力を入れていることを理解できた。
さて、今回の再生材に関する国際会議だが、海外からの講師も招聘されており、かなり中身が濃い会議である。学術的なものであれば関係学会に案内が来るので、おそらく産業が主体の会議と思われる。
小生も招待講演者に選ばれており、PETボトルの再生材を用いたポリマーアロイについて、講演するのだが、PC/PETは現在も生産されているので話しやすいが、PETを80%含有した成形体について悩んでいる。
予稿集の締め切りも近いので決断しなくてはいけないが、原料の廃材が無くなったのですでにディスコンとなった材料である。
再生材を設計するときに気をつけなければいけないのは、廃材の生産調整はできない、という事実である。原料のゴミがが無くなれば、再生材を生産できなくなる。ただし国内の樹脂再生率はまだ2割台なので当分は大丈夫である。
カテゴリー : 一般
pagetop
ChatGPTが登場してから1年以上経ったが、その進化は止まらない。さらに各社から様々な生成系AIが短期間に登場したが、これは基本エンジン部分のアルゴリズムがオープンとなっているから。
すなわちオープンイノベーションである。ソフトウェアー技術の開発を促進するためにコンピューター技術の分野ではLINUXをはじめとしたオープンソースが多い。
コンピューター技術分野の独特の文化に支えられて現在のAIの進化がある。弊社もこのAIを活用する立場から研究を行い、さまざまなノウハウを獲得し、この半年間セミナー会社にてセミナーを行ってきました。
9月から使用シーンをプログラミングと問題解決に絞ったセミナーを行います。WEB上に公開された情報の検索であれば、検索エンジンを使うよりもAIを使用した方が便利である。
さらに、各AIが学習している情報もあるので、一部文献検索にも制限があるが活用できる。驚くのは、国会図書館で検索にひっかからなかった文献が得られた経験もある。
AIが気を使って提案してくれた文献である。当初ハルシネーションと思ったが、その文献を取り寄せてみると関係していた文献であるが、キーワードが含まれていなかった。
1年以上前のAIよりもハルシネーションを起こす頻度は下がったように思う。また、ハルシネーションを回避するプロンプトのノウハウもあるので、これを活用すればハルシネーションに悩まされず快適なAIのある生活ができる。弊社のセミナーにご参加ください。
カテゴリー : 一般
pagetop
高分子の難燃化技術は、トランスサイエンスの分野である。そもそも火災という現象そのものがトランスサイエンスである。燃焼をいくら管理して実験を行っても、それが非平衡で酸化が進行しているならばトランスサイエンスの現象であることを悟るべきだ。
未だ非平衡の現象を科学で解析できていない。そこを理解できていると、無重力状態における燃焼現象が地上と異なることに驚く必要はない。地上と異なるのは「当たり前」である。
地上では、自己消火性となる酸素濃度で可燃性の高分子を無重力状態で燃焼させると燃え続けたのでびっくりした、ということがニュースで報じられた。当方ならば驚かない。
宇宙での火災、とりわけ宇宙船の中の火災は人命にかかわるので重要な研究とばかりに、科学の研究を始めた学者がいるそうだが、センスが悪い。
もっとも、世間は高分子の難燃化技術について未だ正しい理解をしている人が少ないので、いかがわしいサイエンスショーでも「科学」と持ち上げるように、哀れみではなく称賛として見られるのだろう。
科学者と称する人は、自分が正しいと思い込んでいる人が多いように思う。科学的手順で答えを出せばそれは皆が科学として認めてくれる。
仮に無駄な答えでも無知な人から見れば宝物のように見えるのだろう。無駄な知識になっているだけなら良いが、時々間違った問題で正しい答えを出している場合もあるので困る。
カテゴリー : 一般 電気/電子材料 高分子
pagetop