活動報告

新着記事

カテゴリー

キーワード検索

2019.08/01 高分子のプロセシング(25)

DSCの測定装置の試料室には、独立に制御されるヒーターが3組存在する。

 

Aのヒーターで、Bのヒーターの上に置かれた試料(アルミナ粉と混ぜ合わせるとよい)とCのヒーターの上に置かれた参照試料(一般にアルミナ粉を用いる)が常に同じ環境で加熱されるように設計されている。

 

 

Aのヒーターで炉の温度が制御されているときに試料に熱的変化が無ければ、チャートに変化は現れない。しかし、試料が吸熱的変化をした場合には参照試料との間に温度差が生じないようBのヒーターで試料を加熱する。

 

 

この時チャートには吸熱側へヒーターに流れた電流変化が現れる。試料が発熱的変化をした場合には、同様の動作として参照試料側のヒーターCに電流が流れそれがチャートに発熱変化として記録される。

 

 

測定結果の概念図を描けば、結晶化温度(Tc)と融解温度(Tm)は、それぞれ相転移に伴う熱量変化を示し、ガラス転移温度(Tg)は、単なる比熱変化によるベースラインの移動現象として記録されている点に注意してほしい。

 

 

なお、Tgについては、試料の熱履歴とDSCの昇温速度との関係で、吸熱ピークが現れたりする。まず、DSCで測定されたTgにこのような現象が生じる理由を説明する。

 

 

徐冷ガラスあるいは急冷後アニールされたガラスでは、昇温した時に、徐冷ガラスのT-V曲線に従い体積は膨張してゆく。

 

 

この時、溶融状態から冷却した時のT-V直線との交点や、さらに急冷ガラスのガラス転移温度よりも高い温度で急激に体積膨張し、溶融状態のT-V直線に合流する。

 

 

この急激な体積の増加では、徐冷あるいはアニール処理により生成した安定な構造を壊すために過剰な熱が必要になり、高い温度でガラス転移を起こすことになる。

 

カテゴリー : 高分子

pagetop