活動報告

新着記事

カテゴリー

キーワード検索

2020.09/27 高純度SiCの発明(3)

フェノール樹脂とエチルシリケートの組み合わせを高純度SiCの原料に用いることが新規であることをどのように知ることができたのか。

 

簡単である。大学院時代に在籍した研究室でSiCウィスカーの研究をテーマとしていた研究者が数人いて、彼らの輪講や研究報告会に欠かさず出席していたからである。

 

そこでもフェノール樹脂やエチルシリケートを原料とした方法が研究されており、失敗している。すなわち、この原料の組み合わせは高純度SiCに不向きであることが科学的に証明されていた。

 

論文には書かれていないが、失敗実験のデータとして報告され、その失敗の原因がSP値にあったからである。高分子の世界ではフローリー・ハギンズ理論で否定される組み合わせだった。

 

すなわち、ポリエチルシリケートとフェノール樹脂を均一に混合し安定な前駆体を製造することは、科学的に困難な技術とされていた。

 

よく技術は科学の成果であるから科学の研究に力をいれよ、という人がいるが、科学を信じれば信じるほど技術開発が難しくなる、というパラドックスをそのような人はご存じない。

 

技術開発で少しでも成功体験のある人は、一応周囲への配慮から科学への殉教を誓うが、内心は非科学的でも成功する可能性のある限り、なんでも実行しようという考えを持っている。

 

科学が進歩すればするほど、そのような人でなければ新しい発見ができなくなるから面白い。

カテゴリー : 未分類

pagetop

2020.09/26 高純度SiCの発明(2)

大量の情報を短時間にどのように処理するのかは、情報処理が容易になった現代でも重要問題の一つである。

 

最近ビッグデータがよく話題になるが、大半はコンピューターで多変量解析を行った結果である。重回帰分析か因子分析(主成分分析など)が良く用いられている。

 

こうした手法を用いることが最近の成果だと誤解している人が多いが、重回帰分析や因子分析の手法は1970年代にすでに利用できた。

 

ちなみに、当方は新入社員研修で担当したタイヤの軽量化問題について、重回帰分析と主成分分析を駆使して解いている。これらのプログラムがIBMの大型コンピューター3033に付属したソフトウェアーのパッケージに入っていたので、英文の読解力があれば簡単にデータ処理ができた。

 

その時に大きな問題となったのは、データ入力の部分である。最近ビッグデータ解析がよく用いられるようになったのは、文献などの良質なデータがデジタル化されて、それを大量に集めて処理しAIに入力することが容易になったからだ。

 

特許のような文献データについて40年以上前の状況は、まずそれを紙にコピーして整理するところから始めなければいけなかった。そのためそれが作業の障壁となっていた。

 

セラミックスフィーバーの時代にセラミックス業界以外から多数参入できたのは、古典的方法によらないセラミックスの高純度化技術が全くの新規分野であったため調べるべき情報データが少なかったからである。

 

当時「高純度化」という技術は、ファインセラミックス開発の目標の一つであり、経済性の高い高純度化技術はどのようなものでも新規技術になる可能性が高かった。

カテゴリー : 未分類

pagetop

2020.09/25 高純度SiCの発明(1)

セラミックス材料を高純度化する技術はコストがかかる。なぜなら結晶に固溶した不純物を取り除くために一度結晶を壊す必要があるからだ。

 

SiCであれば、BやAl,その他遷移金属は容易に固溶する。これら不純物を除去するには、昇華と再結晶を繰り返さなければいけない。いわゆるレイリー法である。

 

高純度原料を用いて高純度プロセスにより製造すれば、高純度セラミックスができることは、だれでも容易に想像できるが、レイリー法と比較して経済性が優れているのか、という検証は容易ではない。

 

それができたとして、価格を比較することは容易だが、実際にできるのかどうか、すなわち実証実験に費用がかかるからだ。

 

1980年代に高純度SiCの原料として、C(炭素)源は、高純度カーボン、有機物が、Si源は高純度Si,高純度SiO2、有機Si化合物、有機シリケート化合物が知られていた。

 

そして、これら原料の組み合わせ特許とそれを原料として製造する方法の発明がミカンの段ボール箱で15個分出願されていた。

 

このミカン箱の個数は、ゴム会社の知財担当の部長が当方に整理するよう送ってきた個数である。当時はデジタル化されていなかったので、20年分の関係する特許のコピーをこのように集めてそれらを整理することから技術開発をはじめていた時代である。

 

留学中毎朝テニスを一時間、夕方はボールが見えなくなるまでテニスをしてます、と日常を語ったことを後悔したが、段ボール箱15箱を2週間で整理している。

 

整理した結果は、どんぶり調査(ざる調査ではない)の結果と同様であり、エチルシリケート(ケイ素源)とフェノール樹脂(炭素源)の組み合わせ特許が存在しなかった。

 

エチルシリケートと他の炭素源の組み合わせや、フェノール樹脂と他のケイ素源の組み合わせ、並びにそれらを原料とした製造プロセス、応用技術に関する特許はミカン箱2箱分存在した。ただしSiCの製造方法に関係しないノイズ特許もこの中に含まれている。

 

カテゴリー : 一般 電気/電子材料

pagetop

2020.09/24 高分子の誘電率の不思議体験

新素材を開発する手法として科学で説明できない現象を再現よく発揮できるように創りこむ手法がある。

 

その材料が科学で説明できない現象を再現よく引き起こしてくれれば、現象の研究を科学的に行い、材料に創りこまれた機能を科学的に説明できるようになる。

 

このようなことを大学で指導してほしいのだが、大学は科学を教える場なので難しい、とある先生が申されていたが、その先生は、科学技術というものを理解されていない。

 

科学技術には、科学で生み出された技術と科学に裏打ちされた技術の2種類が存在する。後者は創造の過程が科学的に少し怪しいけれど科学で説明できる技術である。

 

PPSにナイロンを分散して絶縁破壊を調べると、一般的な混練プロセスで調整された材料では、絶縁破壊電圧が100Vとなるときがあるが、カオス混合を行った材料では、300Vを超えることがある。

 

電子顕微鏡観察を行うと前者にはナイロンのドメインが観察されるが、後者では単相として観察される。ゆえに絶縁破壊電圧が高くなった、と納得できるが、もう少し研究する必要がある。

 

PPSにナイロンを相溶させてカーボンを10%程度分散した材料でベルトを製造し誘電率を計測してびっくりした体験がある。負の誘電率を再現よく示したのだ。

 

残念ながら中間転写ベルトとしての性能が悪かったのでそれ以上の研究を行っていないが、同一組成なのに負の誘電率になったり正の誘電率になったりする。しかもそれをプロセスで制御できる、という冗談のような体験をした。

 

この体験については、目標とした製品性能が悪かったので十分な研究を行っていないが、もし若ければ、昼休み時間や定時後の時間を使って研究していただろう。

 

若い時の情熱は、お金に縛られないところが良い。不思議なことに爺になると若い時と同じようにお金にとらわれなくなるが、その時には体力がなくなって意欲が空回りする。若返りを目指して最近軽い運動を始めた。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2020.09/23 無料セミナー

1980年代に比較して全国の書店数が半分になったそうである。インターネットの普及の影響と言われている。

インターネットは情報を入手するために大変便利なシステムであるが、知識を得ようとした場合には、役に立たないことが多い。

形式知ならばそこそこ役に立つが、経験知や暗黙知になるとインターネットでは無理である。もっとも暗黙知に至っては、マンツーマンで指導していても難しいが、経験知はやはり経験者から学ぶ以外に良い方法は無い。

新入社員の3か月間、良い指導社員に巡り合った。混練りの神様と呼んでも良いようなレオロジストであるが、実務家の技術者だった。

ご自分の専門領域が20世紀に消えてなくなると自虐的な指導をしてくださったが、その結果暗黙知も伝承していただいた。

その暗黙知のおかげで、退職前の5年間に、カオス混合機の発明、それによる会社への直接貢献といえる中間転写ベルトの大幅なコストダウン、環境対応樹脂の開発などの成果を出すことができた。

これらの成果で給与が増えたわけではないが、30年前の暗黙知の具現化ができた体験は貴重である。この暗黙知の中には、問題解決法や高分子技術が含まれている。

混練の神様は、当方が高分子を大学で学んでこなかったので毎日午前中3時間座学を開いてくれた。その知識は今でも十分役立つ体系が含まれていた。

週末の2日間無料セミナーでその時の知識を公開します。これはインターネットで経験知を伝えることができるのか、という問いから企画しております。

再掲となりますが無料セミナーで予定しているテーマは下記の通り。なお、時間は2時間で9月26日(13:30-15:30)と27日(13:30-15:30)。

<予定テーマ>
1.9月26日(土曜日):高分子材料の初歩(初めて学ぶ高分子的イメージ)
2.9月27日(日曜日):ヒューリスティックな問題解決法(山勘や直感ではない、正しい問題を即座に解く方法)

今回のセミナー参加者募集は終了致しました。

多数のご参加ありがとうございました。

カテゴリー : 一般 高分子

pagetop

2020.09/22 コロナ感染者数

毎日コロナ感染者数が報告される。東京は高止まりで推移しているが、天気予報を聞く習慣以外にこの感染者数の推移を毎日調べる習慣となったのが当方の新しい生活スタイルである。

 

 

PCR検査数が多くなっても患者数が減っていかないのは、再生産指数から同数の隠れ感染者がいるためだろうと推定される。

 

 

しかし、これが諸外国のように急激な患者数の増加となっていないのは、マスクとこまめな手の消毒が効果を発揮しているのだろう。

 

 

最近は公衆トイレの手洗い場も混雑するようになった。昔は男性の場合に用を足した後手を洗わない人が多かった。

 

 

普段露出していない部分を触るのだから、という感覚かもしれないが、最近は見ていると用を足す前に手洗いをする人も出てきた。

 

 

この時ばかりは、手を使わず用を足せないので、感染予防のために、顔以外でも注意した方が良いと気づかされ、当方も事前に手を洗うようになった。

 

 

手洗いとマスクがこれだけ徹底されてくると急激な感染拡大が抑えられるのだろう。とにかく汚れた手で顔を触らない工夫が必要であると同時に汚れたものを素手で触らない工夫も必要だ。

 

 

最近はエスカレーターの真ん中に立つようになった。これは無意識にベルトをつかむ習慣を治すためである。面白い現象として、駅のエレベーターに4人乗っていても動き出さないことがよくあることだ。

 

 

仕方がないので、当方は操作盤の近くに乗るようになった。そして用意していた爪楊枝で押すのである。押しボタン式はこれでよいが静電式のスイッチの場合には困ってしまう。

カテゴリー : 一般

pagetop

2020.09/21 多成分ポリマーアロイ

PC/ABSは、PCにABSをブレンドしたポリマーアロイだ。ABSは三成分のポリマーをブレンドし高靭性化に成功したポリマーアロイで、PCは非晶性で透明度が高く高靭性のポリマーである。

 

PC/ABSは、高靭性のポリマーの組み合わせなので、高い靭性とPCの特徴である意匠性の優れた樹脂になる、と信じられている。

 

ところが、PC/ABS以外にPC/PSやPC/PETなどが開発されると、高いPCに安い樹脂をブレンドしてコストダウンを図った樹脂ではないか、と思いたくなる。

 

この視点で、PCに廃材となったいろいろなポリマーをブレンドしてみると、PCが70%以上含まれている限り、そこそこの活用できそうなポリマーができる。

 

PCで簡単にできたなら、廃材であるPETボトルを70%以上含有した樹脂も簡単にできるだろうと思ったら、これが難しく、PETボトルの射出成形体よりも優れた物性の樹脂を作り出すのに3ケ月必要だった。

 

マトリックスを構成するポリマーがPCからPETに代わると、樹脂の結晶化を制御しない限り、高靭性の樹脂を開発できない。

 

結晶化を制御できても樹脂の溶融時の粘度の温度依存性を射出成型に適合するよう制御しなくてはいけない。

 

少なくともこれらの問題を解決しなければ多成分のポリマーアロイを開発できないことが、開発をスタートして明らかになったので、データ駆動型開発手法とカオス混合の両者を用いて3か月で目標となる樹脂を開発した。

 

できあがったポリマーアロイは、難燃材を使用していないのにUL94-V2試験に合格する難燃性を新たな機能として獲得した。ポリマーアロイの面白さである。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2020.09/20 現象を観る

現象を眺める視点は、科学誕生前と後では大きく変わった。科学誕生以前は、とにかく自然界に潜む機能をよく観察しようと、人類は現象を眺めてきた、と「マッハ力学史」には書かれていた。

 

たとえば、火の発見は、人類の進化の歴史において重要な出来事だったが、このヒントが山火事だった、と小学校の教科書に書かれていた。

 

すなわち、人類の生活に役立ちそうな奇妙な現象を見つけては、それを観察し、生活に導入してきた歴史がある。それを面白く描いた漫画「テルマエロマエ」は、文句なくおもしろかった。

 

ローマ時代の職人が、現代にワープし、観察したお風呂をローマ時代に再現するのである。電気やガスなど無いのに、ウオッシュレット付き水洗便所まで作り上げている。

 

科学誕生後、現象を眺める視点が変わった。仮説を設定してから現象を眺め、仮説との整合性を人工的な現象で確認している。

 

しかし、科学誕生以前から人類が続けてきた観察の姿勢は重要である。少なくとも技術者には、現象の中に新たな機能を見出す視点が求められる。それができなければ新技術の発明などできない。

 

仮説を設定してから実験を行う姿勢は科学者として大切である。しかし、実験で発生した現象を単なる仮説の検証の視点だけで見ていると、新発見を見落とすことがあるから注意が必要である。

 

仮説の検証とともにそこで機能の確認もできる実験を行いたい。タグチメソッドはその一つの方法である。

カテゴリー : 一般

pagetop

2020.09/19 キワモノの扱い

STAP細胞の騒動は、その後どうなったのだろう。ドイツの科学者がSTAP現象を発見したとのニュースが騒がれた後、週刊誌に小保方氏の私生活が紹介されていた。

 

この手のキワモノ事件は傷つく人が多いので隠蔽化されたりするが、その結果悪者が得をするような状態になる。小保方氏と自死されたその関係者だけが不幸をしょいこむような状態を見ると、やはり触らぬ神にたたり無し、というのは本当だろう。

 

当方が高純度SiCの経済的な合成技術開発をたった4日の無機材研における実験で成功させたとき、無機材研の先生方は冷静であった。

 

当方が企業の研究者であったこと、アイデアがその当方から出ていたが企業は見捨てていたこと、実験のゴーサインとその場の提供は無機材研だったことから、丁寧にそのあたりの調整も進められて、小生は無事(でもなかったが)ゴム会社に戻ることができた。

 

ゴム会社では2億4千万円の先行投資がなされ専用の研究所も建設された。当初こそ20名弱のプロジェクトで動き出したが、住友金属工業とJVを立ち上げるまで一人で死の谷を歩くことになった。

 

JV立ち上げ後電気粘性流体の耐久性問題を一晩で解決したり、傾斜機能粉体はじめ特殊な構造の粒子を3種ほど合成したところFDが壊され始めた。

 

やはり触らぬ神にたたり無し、は本当である。一人でJVの仕事をしていたので大変だったので、電気粘性流体とのかかわりなど持たねば良かったのだが、電気粘性流体の事業化まで程遠い状態を見捨てておけなかった。

 

転職後、負の誘電率というキワモノと遭遇した。福井大学で客員教授をしながらその扱いを悩んだが、結局インピーダンスに絶対値をつけて材料設計パラメーターとした。

 

このころになると、たたりを避ける道を選ぶようになっていた。科学ではなく化学の世界には化け物が今の時代でも登場する。

 

PPSと6ナイロンの相溶も化け物現象である。これをカオス混合という技術で製品化したが、いまのところ何もたたりが無いがーーーー。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2020.09/18 負の誘電率

教科書を読むと誘電率は正となることを前提に式が展開されている。しかしロシアの科学者が負となる現象も存在することを予言してから、その存在はタブー視されてきた。

 

STAP細胞と似ている話だ。当方は酸化スズゾルを用いて写真フィルムの帯電防止層を開発していて負の誘電率と遭遇した。

 

従来の評価技術と異なるインピーダンス法(容量法)でサンプルの電気特性を調べていて発見した。しかしキワモノ的現象なので、インピーダンスの値に絶対値をつけてパラメーターとした。

 

これは1994年の出来事だが、2005年には中間転写ベルトの開発を行っていて出くわした。この時は、負の誘電率のベルトでは使い物にならないので廃棄すればよかった。

 

二つの体験は、パーコレーション転移を制御していて偶然発見している。最近この負の誘電率に関し、アカデミアの先生方による特許出願が相次いでいる。

 

すでに11件出願されているが、いずれも概念特許に近いものだ。実際に量産可能なメタマテリアルではない。

 

しかし、当方は量産機で負の誘電率の物質を偶然作り出したのだ。負の誘電率の材料は、帯電防止層には活用できたが、中間転写ベルトでは転写効率が悪いだけでなく画質も欠点が出たのでボツとなっている。

カテゴリー : 一般 電気/電子材料 高分子

pagetop