昨日は、工場で作られる食品の品質問題が車のリコールに比較し少ない状況を説明できる事件が起きたので、連載を中断した。本件は自己の体験から「安全、安心」ではない日本の状況を懸念していたところへ実体を示す事例が発生したので「非科学的問題解決事例」を中断した。
食品の異常は、真っ先に保健所へ知らせ、食品会社の「お客様相談センター」は、保健所へ連絡したことを伝えるのが正しい手順である。証拠品は保健所へ提出すべきである。
さて、PENの短時間アニール技術といっても特許を回避するためにはTg以上の熱処理以外に技術手段は無い。成膜や表面処理の工程においてTg以上で熱処理すればフィルムがしわしわになることは常識として知られていた。さらにアニールにより処理されたフィルムの物性値をクレームにした特許が出願されていたので、技術が完成しても全ての特許を回避できる可能性は少なかった。
科学の視点ではナンセンスな企画で、そのまま提案すればつぶされることは分かっていた。だから企画提案の時に実際に実験室において短時間アニールで製造されたPENフィルムもそえて提案している。
科学的に説明しにくい現象を利用した技術では、現物を示すことが周囲を説得するのに一番良い方法である。短時間アニール技術のPENフィルムは、実験室で簡単に作ることができた。そして驚いたことにできあがったフィルムの粘弾性的性質は、Tg以下のプロセスで製造される長時間アニールのフィルムのそれと少し異なっていたのだ。
未だにこの現象をうまく説明できる論文に出会っていないが、高分子の自由体積の科学的に未解明な現象であることは確かである。Tg以上の短時間アニールでも、Tg以下の長時間アニールでも高分子の自由体積は減少し巻き癖は解消される。しかしその減少過程が異なるために起きている、と想像がつく。
そしてこの想像は、その後ポリオレフィンの混練り効果やポリオレフィンとポリスチレンの相容を研究する動機につながってゆく。いずれも科学的研究の無い分野であるが、高分子の自由体積が関係している。
カテゴリー : 一般 連載 高分子
pagetop
インスタント「焼きそば」にゴキブリのような物質が入っていた、というツイッターが12月2日に掲載され、それが大騒ぎになっているという。さらにツイ-トした若者は、その焼きそばメーカーからツイッターを削除するよう頼まれた、というから驚きだ。
ツイッターで容易に情報が拡散する時代では、情報を隠すのではなく正しい情報を発信するようにメーカーは努力しなければ信頼されなくなる。このような場合むしろメーカー側は積極的に情報を開示し、調査結果までツイッターで答えるべきだろう。たとえ本当にゴキブリが入っていたとしても消費者はその真摯な姿勢に感動し、一瞬売り上げは落ちるだろうが、すぐに回復すると思われる。
今回の処置を誤った群馬県の食品会社の商品は、焼きそば以外の商品まで売れなくなる可能性がある。ゴキブリという虫は神出鬼没の昆虫であることはよく知られている。我が家では至る所に市販のホウサン団子を仕掛けており、その姿を見かけないようなおまじないをしている。しかしそのような努力をしていても、1年に1-2回は見たくもない顔を見ることになる。
今食品は工場で作られる時代である。ゴキブリの一匹や二匹混入しないのが不思議である。これまでの体験から稀にゴキブリが入っている食品が製造されている状態が自然で、それが市場で騒がれないようにもみ消し努力をしているのではないかと疑っている。絶対にゴキブリが入らない食品工場というフレーズは信用できない。
一つの理由は管理の厳しいフィルム工場でゴキブリを見つけた経験があるためである。工場の構造から絶対に入る事ができないはずなのに不気味な彼はいた。ゼラチンは彼の大好物なのだ。腹一杯だったのか動きが鈍く簡単に抱き上げることができ、大切に二重三重の袋に密封しビニールテープでさらに巻き上げ、ゴミ箱へ入って頂いた。
二つ目は、楽しかった単身赴任中の思い出したくもない思い出である。大抵の休日は東京の自宅に帰っていたが、たまたま仕事の都合で休日単身赴任先で昼飯を食べることになった。簡単に済ませるために近くのコンビニでパンを買って食べたが、そのパンの中に、昆虫の足のような物質が入っていた。関節が一つあり、つまむと動かすことができた。紛れもなく彼の身体の一部である。
戦慄の瞬間である。すぐにそのパン製造メーカーに電話をかけたら、「保健所に届ける前に分析させて欲しい」と言われた。1時間ほどで菓子折を持った中年の誠実そうな男性が駆けつけた。
「分析をするまでもなく****の足だ」と当方が言ったら、「このようなパンの焦げた状態の物質は製造工程で混入することがあるので分析結果を待って欲しい」と、「パンの焦げ物質」論を展開し目の前の事実を認めない。そして用意していたビニールの袋の中へ彼の足を丁寧にしまい、「電話代です」と10円を置いて帰っていった。
誠実そうな中年が、その後どのように処理するのか興味があったので騙されてみたのだが、夕方そのメーカーから電話があり、分析担当と名乗る女性から「パンの焦げた物質でした。ご安心ください」と丁寧にうその説明があり、そのままである。当方は彼の片足を保健所へ最初に届けなかったことを後悔した。
自動車にはリコールという制度があり、積極的に自動車メーカーが品質問題を公開するような仕組みになっている。それは品質問題が大きな事故に結びつくためだが、食品も本来リコール制度のような仕組みにすべきだろう。そうすれば食品事故をもみ消そうなどという発想は起きなくなる。
「焼きそば」騒動のその後が気になった。果たしてメーカーは最後まで隠し続けるのか、結果を公開するのか?一方で保健所からは自主回収の指導が出されており、ようやく昨日(4日)の夕方該当商品を回収するとのニュースがWEBに流れていた。これだけ騒ぎが大きくなる前にすぐに対応すべきだったと思う。
自動車のリコールの数に対して食品事故の報告は圧倒的に少ない。これを科学的にどのように捉えたら良いのか?食品の包装には、異常があったらお客様相談センターへ電話するように書かれているが、消費者は、異常があればすぐに保健所へ届けるようにするべきだろう。食品の異常は食品メーカーのお客様相談センターへ相談してはいけない。
カテゴリー : 一般
pagetop
アドバンスドフォトシステム(APS)という新システムがカラー銀塩フィルムの最後のシステムとしてイースタマンコダックから提案された。このAPSに使われたPENフィルムで問題になったのは巻き癖である。
PENフィルムをパトローネに巻き取り放置すると、巻き癖がつく。現像処理で巻き癖はジャムなどの問題を引き起こすので実用化に際して巻き癖がつきにくいPENフィルムの開発が求められた。
巻き癖は高分子のクリープ現象が品質問題として現れていることが分かっていた。だから科学的にはクリープが起きにくくなるように高分子の高次構造を設計すれば良い。ここまでは当時科学的な論文にも結論されていたことである。
どのような高分子でも結晶化すれば、その結晶部分はクリープが起きにくくなることは想像できる。高分子の高次構造が結晶部分と非晶部分でできているとすると非晶部分がクリープを起こしやすいであろう事は想像でき、さらに非晶部分でも密度の低い自由体積部分は他の非晶部分よりもクリープを起こしやすいであろうことも想像がつく。
そのため巻き癖を着きにくくするためには、自由体積部分を少なくできれば良い、という仮説が立つ。ただ高分子の自由体積部分に関しては今でも研究課題となる話題を事欠かない科学的に未解明な事柄が多い。だからこの仮説については、それを科学的に厳密に証明しようとすると自由体積の測定方法そのものを研究する必要が出てくる。
ところで、高分子の自由体積を少なくする方法として、高分子のTg近くで熱処理すれば良いらしいということが科学的に知られていたようだ。但しTg以上の熱処理ではフィルムがごわごわになるのでアニールはTg以下で行うことが常識として分かっていた。
ゆえにこの科学的に推定される技術が特許としてライバル会社から出ていた。ところが科学的に当たり前であるが、Tg以下の温度で24時間もフィルムを一定温度で放置しなければならないという問題があった。ただフィルムを成膜後巻き取ったまま室に放置すれば良いので問題ではない、という言い訳がどこかに書かれていた。
しかし、技術としてスマートではない。できれば成膜プロセスあるいは表面処理プロセスの途中で巻き癖解消の機能を付与できてこそ優れた技術である。APSが普及したときに備え、科学と常識からは発想しにくいPENの短時間アニール技術開発を企画した。
カテゴリー : 一般 連載 高分子
pagetop
科学の時代では科学の常識に反した現象は、否定証明により起こりえないこととしてかたづけられた。科学に反する現象を科学的に肯定証明するためには、その現象を証明するための新たな真実が必要になり、その真実を見つけることが難しい作業になる、と分かっていたからである。
科学の常識に反する現象でも、それが現場で必要な機能を提供してくれるのならば、技術で活用できるようにするのが技術者のチャレンジであり、そのチャレンジにより新たなイノベーションが引き起こされる。イノベーションが起きれば真実のヒントも見えてきて、科学の研究もやりやすくなる。
PPSと6ナイロンを相容させる技術ができてから5年経過してアカデミアから高分子材料がスリットを通過するときの現象についてモデル化した研究が発表されるようになった。すでに3報論文が出ている。
20世紀には科学が技術を牽引してきたが、科学が急激に進歩した結果、21世紀は技術が科学を牽引しなければならない時代になった。すなわち科学者の増加により科学で容易に研究できることはすべてやり尽くされたからだ。
今科学の進歩が著しいのは、かつて神の領域として倫理の問題を議論しなければならなかった分野である。高分子物理も本来は力を入れなければならない分野であるが、大変難しいのでその進歩が目に見えない。
STAP細胞に大衆が興味を示すことができたのは理解しやすいからである。分かりやすい大半の科学の問題は20世紀にほとんど解決されてしまった。その様な分野で、いま新たな現象を用いる技術開発を行おうとするならば非科学的な問題解決プロセスを避けて進むことができない。
そのとき非科学的な問題解決プロセスでチャレンジする決断がリーダーに必要になる。 www.miragiken.com には、弊社が提供するヒューマンプロセスについて二人の探偵を事例に紹介しています。
カテゴリー : 一般 連載
pagetop
昨日の話をもう少し詳しく書くと、コンパウンドの開発を外部に依頼して製品開発を進めていた体制だったので、そこへカオス混合の開発を依頼する予定でいた。しかし、外部のコンパウンドメーカーに一笑にふされ、目論見は頓挫した。非科学的な内容だったからである。
結局材料を内製化することになり、コンパウンド工場をたった3ケ月で立ち上げなければいけない状態に追い込まれた。しかし日本には粋な中小企業があり、無茶苦茶な発注を当方の依頼であれば、と引き受けてくれた。これは過去の成功体験を積み重ねてきた信頼関係のおかげで、そこの担当者と進めた仕事がすべて成功していたからだ。
非科学的な技術は、町の中小企業により短期間に生産設備へと具現化された。日本の第二次産業の良いところは、中小企業でも凄い技術を持っているところがある点である。さらに良い点は現場指向が強いので非科学的であっても実験室で実現できたならば、信用してそのとおりのものを作ってくれることである。
特注二軸混練機からPPSと6ナイロンが相溶し透明な樹液となって出てきたときには感動して涙が出てきた。教科書に書かれていない現実が目の前で起きているのである。ところがマネージャーは「本当にできたんですね。」とあっさり一言だけであった。
企業の研究開発ではイノベーションが求められているが、大抵の研究管理者はこのマネージャーと同じではないだろうか。チャレンジの意味が分かっていないのである。管理者であることを忘れ、いっしょに感動を共有して欲しかった。
カテゴリー : 一般 連載 高分子
pagetop
科学的問題解決プロセスにおいて成功するためには、そのプロセスの過程で現れる現象がただ一つの真理で支配されているという条件が必要である。ゆえに科学的問題解決プロセスでは、仮説が重要となり、仮説に基づき一つの真理を検証できるように管理された実験条件で問題解決プロセスを遂行する必要がある。
ところが企業の製品開発において一つの真理を追究できるという理想的な実験モデルを設定することが多くの場合に難しい。誤差の問題以外に市場で想定されるノイズをモデル化したときの妥当性を検討しなければいけないという煩わしさも生じたりする。そこで手を抜けば複数の真理を内包した実験モデルになり、科学的な実験はもはや困難になる。
ある製品開発でPPSと6ナイロンを相容させる必要に迫られた。現代の科学でこれはナンセンスな目標である。しかし、製品開発で得られたデータの中には材料のTgが一つしか現れず異常に下がったサンプルが存在していることに気がついた。この「発見」をデータのばらつきと見るのか、偶然科学に反する現象が起きた、と考えるのか議論になった。
分析グループに解析をお願いしたら、偶然が重なった測定ミスという結論を出してきた。そして本来は相分離している、という分析グループで実施されたサンプルを用いた電子顕微鏡写真まで送ってきた。レポートでは見事な否定証明が展開されていた。
科学に反する現象が起きた場合に否定証明という方法は結論を出すのに最も安直な方法である。しかし幸運だったのは、否定されたとしてもPPSと6ナイロンが相容しない限り問題解決できない状態まで追い込まれていたことだ。
グループリーダーの立場でコーポレートの研究所が出した結論を無視し、カオス混合の開発を指示した。ところがマネージャーから反対され、従来技術の範囲でできないことを証明しテーマを終了しようということになった。おそらく大抵の企業でもこのような流れになると思われる。
当方は、粋のいい退職間近の職人と、活きの良い若手を抜擢し、3人でカオス混合の開発を行い、残りのメンバー20名をマネージャーに任せ否定証明の仕事をやらせた。結果はすぐに出た。カオス混合で非科学的な現象を引き起こすことができ無事製品開発に成功したのだ。
カテゴリー : 一般 高分子
pagetop
問題解決においてリーダーの果たす役割は重要である。特にヒューマンプロセスを実践しようとするならば、科学一辺倒の職場では、ある種の覚悟も必要になる。以前にも書いたがiPS細胞におけるヤマナカファクターの発見では、ヒューマンプロセスに必要なリーダーの条件がうまく発揮されている。
ヤマナカファクター発見に至る実験の大半は学生により進められたという。20個以上のDNAを細胞に組み込む非常識な実験も学生の発案による。そしてこの実験で成功後、消去法という科学者には珍しい実験プロセスで4個のヤマナカファクターを決めている。
すなわちヤマナカファクターの発見までのプロセスは非科学的に進められ、それを科学を指導する立場である山中博士が好意的に捉えていた点である。ただしヤマナカファクターが見つかった後に行っている細胞の初期化実験はすべて科学的に進められ、論文も捏造ではなくノーベル賞受賞につながる本物だった。
テレビのインタビューで語られたヤマナカファクター発見に至る経緯の説明はこのように衝撃的だった。科学的プロセスと非科学的プロセスをうまく組み合わせて研究を進め、学生が試行錯誤で行った非科学的なプロセスでもリーダーは好意的に受け入れ担当者のモチベーションを大切にしていたのである。
大学や企業の研究者の会合でこの話をすると、皆その様に推進しているという。しかし当方が転職後経験したのは、科学的に研究開発を進めろ、という指示ばかりであった。転職直後における頃当方の仕事の進め方も批判の対象になった。
そのため企業の中で行われるプレゼンのためにわざわざ科学的に進めたかのような資料を用意するようになった。科学的プロセスは重要である。しかしそろそろ非科学的プロセスでも受け入れる時代になっても良いように思われる。
科学的プロセスは小学校以来学んできているのである。しかしそれが現場でうまく活用されていないのは他に原因がある。
カテゴリー : 一般
pagetop
ホワイトボードの図は、コロイド科学の知識を単純に展開すると簡単に否定される図であった。しかし、コーチングのストーリーを考えていた時に、科学的にはナンセンスな図だが、条件が揃えば実現できる現象ではないかと考えた。
すなわちこれは、機能の実現方法を思考実験であれこれ考えて思いついたヒューマンプロセスの成果である(詳細は弊社インフォメーションセンターへ問い合わせて頂きたい)。
コアシェルラテックスの合成過程でこの現象は生じると思われたので、担当者を集めて図で彼らの思考に刺激を与えたのである。ゾルをミセルとして用いるラテックス重合技術はこのようにして1993年に生まれた。ただし科学雑誌に他の研究者の報告が初めて掲載されたのが2000年なので7年早く世界初の技術が非科学的プロセスで生まれたことになる。
また、科学雑誌の研究報告では、ミセルができているところまでの論文内容だったが、写真会社ではそのミセルを活用してラテックス重合するところまで技術を完成していた。
世界初と緒言に書かれた外国人の論文が発表された直後に推薦された技術賞では学会により対応が異なった。ゾルをミセルに用いるのは技術ではない、とアカデミアの先生に否定され高分子学会賞を逃がしたが、高靱性ゼラチン技術として写真学会ではゼラチン賞を受賞できた。
一度技術ができるとその証明を科学的に行う事は容易である。しかし、技術を生み出す過程について科学的に示すことは大変難しい。この技術開発で幸運だった点は、特許回避するために膨大な数の実験を行っていたことである。しかも特許には書かれていない条件で。
コーチングを行うときには、後者も着目した。すなわち特許に書かれていない条件ではコアシェルラテックスの合成は大変難しくなる。なぜ難しくなるのか、という点とそれを克服するために担当者はどのような実験を行うかを考えてみた。
そしてきっと失敗作の中にうまくゾルでミセルが形成された場合があるのではないか、と「想像」した。うまく安定なミセルができれば後はコアシェルラテックスよりも簡単である。単なるラテックス合成実験となる。
カテゴリー : 一般 連載 高分子
pagetop
靱性の向上手段としてコアシェルラテックスが科学的に考え出されたのだから、それを開発することこそ近道、という考え方が当時主流を占めていた。これは一つの戦術であって他の戦術も検討すべきだ、といっても言葉の遊びとして片付けられた。
担当者を集めて戦略から再検討させてみた。目標仮説は、シリカが凝集すること無く分散し、ラテックスも同様に分散している構造を有するゼラチンが高靱性になる、ということで一致した。しかし、その実現方法となるとコアシェルラテックス以外アイデアが出てこない。
ホワイトボードに目標仮説の図を書いてみた。担当者の一人がコアシェルラテックスの合成に失敗したときに、そのイメージどおりのものができている可能性があると発言した。さっそくその実験を再現し、そこへゼラチンを添加して薄膜を作製してみた。すると驚くべきことにコアシェルラテックスで補強したゼラチンよりも靱性が高いゼラチン膜ができた。
実際にはコーチングプロセスにもう少し時間をかけたが概要は上記であった。高靱性ゼラチン膜ができたとき、皆半信半疑だった。当方は可能性を信じていたのでコーチングで担当者を成功へ導くことができた。
コロイド科学の観点から否定される図を書いたところ、それに触発されて実験の失敗例を思い出し、それを追試したところゴールにたどり着いたのである。この問題解決プロセスは科学的ではない。
さらに、ホワイトボードに書かれたシリカとラテックスが凝集しないで分散している状態は、ゼータ電位の不安定性を考えると、科学的にナンセンスな図である。しかし、この科学的にナンセンスな図が、科学的に取り組んでいては絶対に発想できない新しいアイデアを生みだし開発を成功に導いたのである。
カテゴリー : 一般 連載 高分子
pagetop
問題を抱えている現象があったとしよう。その問題が困った現象を引き起こしている事が明確ならば、すぐにその問題を解決しはじめる。しかし、意思決定された目標があり、その目標に至る過程でその問題を含む現象を避けて通ることができるならば、迂回路を探す問題を新しい問題として解いても良い。
目の前の問題を解決するのか、迂回路を探すのか、これは戦術論である。多少の問題については目をつぶるという戦略であれば、戦術として迂回路を探す問題に精力を注ぐことになる。ドラッカーが言うところの「何が問題か」という問いに正しく答えるためには、戦略がまず必要である。
写真会社へ転職したときのテーマに超迅速処理技術というのがあった。これは感材の現像処理時間を短くする技術である。現像処理時間を短くするためには、フィルムを早く搬送する必要がある。また湿式現像では、素早い乾燥技術も重要になってくる。いずれもバインダーに使われている脆い材料、ゼラチンにとって厳しい課題である。
脆い物性を改善する技術として、シリカをコアにしてラテックスを殻のようにシリカのまわりに合成する技術、コアシェルラテックス技術が登場した。シリカのまわりを柔らかいラテックスで覆っているので、シリカが凝集すること無く、硬さと靱性を増すことができる技術と言われた。但し問題は多数の特許がライバル会社から出ていたことだ。
このような状況で技術者は、どのように特許を回避し新しいコアシェルラテックスを開発するのか、という問題を取り上げがちである。しかし目標は脆くないゼラチン、靱性が向上したゼラチンを開発することである。
戦略としてシリカとラテックスを用いて脆くないゼラチンを創り出すことが決まっているのであって、コアシェルラテックスを開発することが戦略として決まっているのではない、ということに気がつく必要がある。
カテゴリー : 一般 連載 高分子
pagetop