活動報告

新着記事

カテゴリー

キーワード検索

2013.10/07 高分子の難燃化技術とノウハウ(5)

溶融しやすい樹脂を炭化促進型で難燃化するには、燃焼時に溶融物の粘度を高くなるような組成にすれば良い、そしてリン系の難燃剤を用いるときにはオルソリン酸として燃焼時に系外へ揮発しないように難燃剤の分子設計を行う必要がある、ということがホスファゼン変性ウレタンフォームの開発経験で得られたノウハウである。

 

しかし,これは難燃試験を行いながら観察して得た仮説に近く科学における定理ではない。但しリン系の難燃剤が燃焼時にオルソリン酸として揮発している現象について当時の科学論文に書かれていた。また、熱重量分析を行い、その重量減少カーブの解析や分析後の残渣を組成分析したところ、ホスファゼン変性ウレタンフォームにおいてほぼ添加した量に相当するリン成分が含まれていたが、市販の5種類のリン酸エステル系難燃剤では600℃における残渣にリン成分がまったく観察されなかった。

 

難燃剤の分子設計に関して科学的検証に耐えうる情報は得られたが、燃焼時の溶融物の粘度については溶融物中でホスファゼン誘導体がどのように振る舞っているのか不明のため検証が困難であった。例えば単純に軟質ポリウレタンフォームのポリエーテルポリオールとホスファゼン誘導体を混合してみても混ざらない。

 

ただ、系外にオルソリン酸としてリンの成分が揮発しない場合にはリンの難燃化成分で高粘度化できてドリップを防げるのではないか、と予想された。そこで一般のリン酸エステル系難燃剤を用いる時に、燃焼時の熱で無機高分子を生成する可能性のあるホウ酸エステルを組み合わせて難燃化する手法を試してみることにした。

カテゴリー : 一般 高分子

pagetop

2013.10/06 高分子の難燃化技術とノウハウ(4)

溶融しやすい樹脂を70%以上含む場合は、炭化促進型で難燃化が難しい、と述べてきたが、できないわけではない。開発に時間がかかるのである。もし2年程度の時間があれば、目標とする材料を開発できるかもしれない。かもしれない、と書いたのは、2年も基礎検討を行った開発経験が無いからだ。

 

但し、溶融しやすい軟質ポリウレタンフォームを半年で炭化促進型により難燃化した経験がある。ホスファゼンで変性した軟質ポリウレタンフォームは、ホスファゼンの添加量が7wt%前後でもASTMの試験で溶融物が生じない状態で炭化促進型の難燃化を実現している。

 

イソシアネート化合物とのプレポリマーを合成して反応型難燃剤に設計し軟質ポリウレタンフォームに応用した。入社2年目の成果を出せた、と思ったら始末書を書かされた。市販されていない難燃剤を使用したので量産できないことが問題になった。今から考えればこれは管理者の問題であるが、無知な新入社員が勝手にやった仕事として扱われ責任を取ることになった。当時は責任を取れるぐらいの立場になった、と勘違いして始末書を躊躇せず書いた。

 

後日開発管理部長から褒められたので訳が分からなくなった。始末書も初めての経験ならば、それが原因で褒められたのも最初で最後であった。サラリーマンを終えてみると開発管理部長が褒めてくれた理由がよく分かる。責任感の欠如した管理者に対して責任感のある新入社員という構図である。自分が開発管理部長の立場でも褒めたくなる。ただ、責任感の欠如した管理者をなぜ誰も注意しなかったのか、という疑問は残る。ゴム会社ではこの始末書を初めとして褒められるよりも叱られた記憶の方が多いからだ。12年勤務して多くの方から叱咤激励され大変勉強になった。

 

ところでホスファゼン誘導体はリンの含有率が高く、リン酸エステル系の難燃剤に比較すると同一添加量でリンの添加量を多くできる。また、一般のリン酸エステル系難燃剤は燃焼時にオルソリン酸の形で揮発するが、ホスファゼンは燃焼時に揮発せず、系内に残り難燃化の機能を果たすので、溶融物の增粘に効果がある。

 

しかし、いつでも增粘効果が十分に発揮され溶融物を抑えるわけではない。溶融の激しい樹脂では、ホスファゼンをかなり大量に添加しなければ燃焼時の溶融を抑えることができない。ホスファゼンは大塚化学の努力で最近価格が下がったが、まだ一般の難燃剤に比較すると高価なためコストの問題が発生する。コストのバランスを取りながら、溶融しやすい樹脂を70wt%以上含有し炭化促進型で難燃化する技術は、難易度が高く開発時間がかかる。

 

ホスファゼンは側鎖を変性し様々な誘導体を合成可能である。ゆえに難燃化しようとする樹脂に分散しやすい構造の高分子量体を20%程度添加(この時難燃化をしたい樹脂は80wt%の含有率になる)すれば炭化促進型の難燃化を達成できるかもしれない。しかし、その時の樹脂の他の物性については予測不可能である。溶融型システムで強相関ソフトマテリアルの設計を行い難燃化した方が経済的で樹脂の物性バランスも取りやすい。

 

 

カテゴリー : 一般 高分子

pagetop

2013.10/05 高分子の難燃化技術とノウハウ(3)

UL94-V2を目標に溶融型で樹脂の材料設計を行った場合にフッ素系樹脂を添加してはいけない。フッ素系樹脂は1%前後添加すると溶融物を抑制する作用を発現する。フッ素系樹脂を用いる場面は炭化促進型で材料設計を行い、ドリップを抑制したいときである。溶融型で添加するとどうなるか、興味のある方は溶融型で材料設計された樹脂に1%前後のフッ素樹脂を添加してみると良い。実験結果はここでは触れない。

 

溶融型による材料設計の面白いところは、難燃剤を添加しなくてもUL94-V2レベルを通過できる樹脂の設計が可能な点である。難燃剤を添加していないのでLOIは21に到達しないが、これはLOIの試験方法を工夫すると21に到達する。邪道と言われかねないのでこれ以上書かないが、この結果は溶融型による材料設計で実火災の時にも効果があることを示している。

 

30年以上前、新婚家庭には売れないかもしれないが燃えない寝具を開発していた時に軟質ポリウレタンフォームを溶融型で材料設計した。入社して間もない頃だったので胡散臭い方法と思いながら仕事をしていたが、寝たばこの実験を行ったときにその先入観は吹っ飛んだ。着火するがすぐに自己消火するのだ。タバコ2本でも大丈夫であった。それ以来あさはかな先入観は持たないことにした。

 

このモデル実験で溶融型による難燃材料設計の有効性を知った。この時は難燃剤が5%添加されていたが、うまく材料設計すれば難燃剤無添加でもいけるかもしれないと思った。しかしテーマが終わったのでそれ以上の検討はできなかった。退職前にPETの難燃化設計を検討できるチャンスが訪れた。30年以上前の思いで材料設計を行ったところ難燃剤無添加でもUL94-V2を通過できる樹脂を設計できた。強相関ソフトマテリアルという概念を用いて材料設計を行い、PETに20wt%程度5種類のポリマーを添加している。5種類のポリマーにはそれぞれ樹脂の機能分担が決まっており、それをバランスさせて材料を完成した。

 

カテゴリー : 一般 高分子

pagetop

2013.10/04 高分子の難燃化技術とノウハウ(2)

30年以上前に存在したJIS難燃2級という規格は欠陥規格であったために簡単に燃えてしまう天井材の普及を促し問題となった。当時硬質ポリウレタンフォームの軽量天井材が現場の施工で好評であったがJIS難燃2級から新しい簡易耐火試験に規格が変更されてからフェノール樹脂発泡体へ置き換わっていった。この規格見直しの引き金となったのは、以前紹介した餅のように膨らむ硬質ポリウレタンフォーム天井材である。

 

この餅のように膨らむ硬質ポリウレタンフォームは科学的な材料設計の成果として開発された。餅のように大きく膨らみ変形すれば火元から材料が逃げることができ、その結果延焼を防ぐことができる、という「仮説」(注)で材料設計されたが、これは説明するまでもなく姑息にもJIS難燃2級の規格の欠陥をついた考え方である。この材料設計の危険性は実火災を考えれば明らかであり、餅のようにふくれあがり一瞬火から逃げることができても、LOIが21以下の材料では引火したら新たな火源となる。

 

技術的に考えるときには機能が重要なので、「火がついても消える材料」、という最低限の機能を持った材料を設計しなければいけない。このような設計を実現するためのノウハウは、「溶融型(ドリッピング型)」か、「炭化促進型」で材料設計をするかのいずれかである。これが筆者のノウハウで、このノウハウでPETを8割ほど含む樹脂でUL94-V2を通過できる材料設計を1ケ月で実現している(実験室評価)。

 

他の技術者の中には、これ以外のノウハウを持っている方がいるかもしれないが、高分子の難燃化設計を行うときに、この2つのノウハウによる実現の可能性を筆者の場合には考える。そのために設計対象の材料でまず燃焼試験を自分で行うか、自分でできない場合には必ず試験の時に立ち会うことにしている。そして燃焼挙動から、難燃化設計の方針と到達レベルを予測する。これは難しいことではない。

 

UL94-V2レベルならば溶融型でも炭化促進型でも達成できるがV0になると炭化促進型でなければ実現できない。もしドリップが激しい樹脂であれば、溶融型の設計でまずV2レベルを狙い、V0は溶融しない樹脂とのブレンドを検討することになる。

 

PETはTgが低く着火すればすぐに溶融が始まる樹脂なので70%以上のPET含有率の樹脂を設計する場合にはUL94-V2レベルの樹脂が目標となり、UL94-V0を目標とするならばPET含有率を50%以下にして炭化促進しやすいPCなどとのブレンドで材料設計を行う。

 

このノウハウは環境樹脂としてよく知られているポリ乳酸樹脂の設計でも使われており、例えば電気機器の外装材ではUL94-5Vbが目標となり、ポリ乳酸樹脂の含有率を30wt%前後まで下げて材料設計されている。30wt%前後しかポリ乳酸が含まれていないにもかかわらずポリ乳酸樹脂と呼ばれたりするのは少し奇異に感じるが、ポリ乳酸を70wt%以上含有する樹脂でUL94-5Vbを通過する材料設計はノウハウから判断して、開発工数も含めかなりのコストアップとなる。しかし、炭化促進型で強相関ソフトマテリアルの考え方を用いれば可能と思われる。

 

 

 

(注)昨日も触れたがこのような命題は、真理を追究する科学の仮説とはよべない。

 

カテゴリー : 一般 高分子

pagetop

2013.10/03 高分子の難燃化技術とノウハウ(1)

科学と技術の相違点の一つとして、技術にはノウハウというやや抽象的概念までもあたかも定理のごとく扱い、目標とする機能を実現するところがある。科学では一つの真理を目標とするので経験的な事項や再現性があっても論理的に理解できない現象を利用することはない、というよりもそれを行ったら科学の存在する意味が無くなる。科学技術とはうまい表現でこのような相違点をうまくカプセル化している。しかし、このカプセル化が時として技術の伝承を困難にする場合があるので注意が必要である。

 

例えば以前この欄でも紹介したが特公昭35-6616という酸化第二スズゾルを用いた帯電防止薄膜の技術は、その周辺のノウハウとともに伝承されず、ライバル会社に1000件以上の特許を出願されて使用できない状態になっていた。公知の技術については権利化できないはずであるが審査請求された発明について異義申し立てが無ければ発明は新規技術として登録される。ゴム会社から転職した写真会社では特公昭35-6616という特許の存在までも忘れ去られ、つぶせる特許もつぶせない状態であった。

 

技術の伝承がなされない場合に重要な基盤技術が揺らぐ、という表現がされるが、「揺らぐ」どころではなく自分たちの開発した技術であっても使えなくなるのである。10年以上前から技術経営(MOT)の重要性が叫ばれているが、技術の伝承はその重要検討課題である。帯電防止技術の悲惨な状況を立て直しうまく伝承できる体制まで創ろうとしていた道半ばにデジタル化の波に押し流されて実現できなかったが、帯電防止技術は写真フィルムだけでなく複写機にも活用できる重要な基盤技術のはずである。しかし、それが認知されていない風土では、まずその風土を耕すところから始めないとダメであることを学んだ。

 

高分子の難燃化技術も帯電防止技術同様にノウハウが多く技術の伝承が難しい分野である。そもそも科学的に整理されていない技術分野は、企業の中で基盤技術として共有化されるまでの道のりが険しいようだ。トップが非科学的なノウハウの重要性を認識しない限りノウハウの塊の技術を基盤技術として育成することはできない。写真会社の経験では非科学的な内容を軽蔑する風土があり、ノウハウを職人の世界の技術のように扱われていた。非科学的な内容をあたかも科学の香りがするように努めなければいけない風土では非科学的な技術は育たない。

 

高分子の難燃化技術で難しいのは、対象とする商品の活用される分野が異なると難燃化規格が異なるケースが存在することである。高分子の燃焼について科学的に解明がされていない部分が多く「燃えにくい」高分子材料を科学的に完全に表現できていない。ゆえに商品の活用分野や業界が変わると難燃化規格が異なることになる。この様々な難燃化規格の存在が科学的な材料設計技術を難しくしている。明日はこの点について述べる。

カテゴリー : 一般 高分子

pagetop

2013.10/02 高分子の難燃化技術と仮説

高分子の難燃化技術は、科学的に攻略しにくい技術である。20世紀末様々な技術開発が行われ、臭素系難燃剤がある一定の市場規模を占有したと思ったら、環境問題に関わる各種法律及び規制によりその市場が縮小し始めた。

 

一方でハロゲンと三酸化アンチモンとの組み合わせは経済的で高い防火性能を発揮する難燃剤であり、これに置き換わる統一コンセプトの技術は存在しない。今リン酸エステル系難燃剤メーカーは臭素系難燃剤に奪われた市場を取り戻すチャンスである。

 

ところが高分子の難燃化技術におけるリン酸エステルの役割について30年以上前に提案されたメカニズム以上の研究報告は無い。また、その提案されたメカニズムについても理解はできるが、はたしてそれが100%正しいのかどうか怪しい部分も存在する。恐らく高分子の種類ごとにそのメカニズムを詳細に研究しなければいけないのであろう。

 

このような科学的研究を進めにくい分野で仮説を持って実験を進めよ、と言われ困った経験がある。それは、建築材料の開発において餅のようにふくれる硬質ポリウレタンフォームを設計した人物である。この硬質ポリウレタンフォームの開発で建築の難燃化基準の見直しが行われるようになったので大きな成果をあげた、と評価はできるが、一方でLOIが19程度の材料で建築材料を設計できる、と考えた甘い考えの研究者という見方もできる。

 

彼は、硬質ポリウレタンフォームの開発過程で、当時の規格JIS難燃2級の試験を行ったときに極めて性能の良い処方を発見した。調べてみたら難燃性試験の時に大きく変形して炎から試験片が外れていた。そこで餅のように大きく膨らむ材料設計にすれば難燃性試験を通過できると、仮説を立てて開発を行った、と誇らしげに説明していた。

 

はたしてこれは技術開発における正しい仮説と言えるのだろうか。そもそも仮説とは何か、という前に製品の品質設計の考え方に怪しいところがある。実火災を想定したら、少なくとも材料は自己消火性に設計されていなければ危険である。LOIが19程度の材料では、仮に難燃性試験を100%通過できても実火災で引火した瞬間よく燃え、それ自身が火災を加速する存在になる危険きわまりない材料となる。構造材料には使用できない。

 

溶融型で消火する技術では、溶融により火が消える機構が明確で初期消火に効果があることが分かっている。しかし火炎から変形して規格を通過する、というのは邪道である。着火してからの挙動が溶融型では消火となるが変形逃避型では消火する保証が無い。

 

30年程前に仮説による実験の重要性を教えられたが、事例が悪かった。餅のように膨らむ硬質ポリウレタンフォームの普及で難燃性試験が見直され、プラスチックフォーム建築材料は硬質ポリウレタンフォームからフェノール樹脂フォームに変わっていった。科学的に取り扱いにくい分野の技術開発では、仮説よりもあるべき姿を想定することが重要と思う。あるべき姿を実現できる機能とは何か、を追究するのが技術開発である。仮説とは真理を追究するために用いる。

カテゴリー : 一般 高分子

pagetop

2013.10/01 フェノール樹脂の難燃化(3)

妄想を実現可能なアイデア、そして実際の研究開発テーマに仕上げるために、30年以上前に考案した弊社の研究開発必勝法でまとめてみた。その手順に従い研究開発を進めた。

 

最初に行った実験は、コストを考えず妄想が正しいかどうかを確認するモデル実験である。フェノール樹脂のソフトセグメントに含まれるフェノール性水酸基あるいはメチロール基と反応しうる活性シラノールもった水ガラス抽出ケイ酸とフェノール樹脂を混合する試みを確認した。

 

水ガラスから抽出されたケイ酸ポリマーのTHF溶液とフェノール樹脂を混合し、THFをエバポレーターで除去しケイ酸変性フェノール樹脂を試行錯誤で製造した。このような実験手順を記載した科学情報や特許など無かった時代である。ケイ酸ポリマーの抽出法に関してはセメントの改質特許を参考にした。30年以上前にそれをフェノール樹脂の変性に応用したのは世界で初めての有機無機ハイブリッド技術であり、難しそうであったが困難と捉えず萌えの感覚で実験した。

 

酸触媒と発泡剤を混合して何とかフェノール樹脂発泡体にできたのだが、驚くべきことにフェノール樹脂の脆さが著しく改善されていた。また耐火性も難燃剤を用いなくても高い防火性を持っていたリバースエンジニアリング不能なフェノール樹脂と同等であった。熱分析を行ったところソフトセグメントの熱分解挙動は消失していた。仮説とは呼べないが、こうあって欲しいと思い描いた妄想は的中していた。このように科学的では無いが目標を達成することができたので研究開発必勝法の次のステップへ進んだ。

 

3種類ほどシリカの超微粒子を用意し、フェノール樹脂に分散した。超微粒子なのでうまく分散しない。高分子界面活性剤で超微粒子を前処理して同じ実験を行ったところうまく分散した。一般にはカップリング剤で処理をする場面であるが、カップリング剤は高価である。高分子界面活性剤でカップリング剤と同様の効果が得られることをノウハウとして経験で学んでいた。経験で得られた結果を使用しているので非科学的ではあるが、得られた発泡体はケイ酸ポリマーで変性したフェノール樹脂と同様の防火性と靱性の高さを示した。

 

K1チャートでゴールまでたどり着き、特許を1件書くことができた。K1チャートの良いところは実験がうまくゆかなかった時に次のアクションが決められている点にある。そして次のアクションを実施した結果がゴールにどのような影響を及ぼすのか可視化されている点も便利だ。文面では説明しづらいがご興味を持たれた方はお問い合わせください。

 

(注)このフェノール樹脂の開発では、「ソフトセグメントを拘束したならば防火性を高められるのではないか」という仮説もどきを確認するように実験が進められたが、ソフトセグメントと防火性の関係について科学的な根拠があったわけでなく、グラフに現れた現象の一つである。ゆえに仮説もどきを科学的な仮説と同等に扱うためには多くの実験、すなわち研究が必要になる。「仮説を持って実験を行え」と指導するケースが多いが、指導される側は仮説もどきと科学的な仮説の谷間で右往左往している。むしろ、こうなって欲しいと期待して実験を行え、と指導した方が開発現場では良いのではないか。仮説という難解な言葉でアイデアがしぼむ場合もある。むしろアイデアが芽生えるような、すなわち現場が発明に「萌え」るリーダーシップが重要である。

カテゴリー : 一般 高分子

pagetop

2013.09/30 フェノール樹脂の難燃化(2)

30年ほど前、難燃剤を使用しなくても建築基準を満たすフェノール樹脂発泡体を供給できるメーカーがあるにもかかわらず、他社は難燃剤を5-10%程度添加したフェノール樹脂原液を販売していた。しかし科学的なお決まりの手順で難燃剤が添加されていないフェノール樹脂を解析しても満足な結果が得られず、処方設計の仕事が暗礁にのり上げたが、試行錯誤の実験でブラックボックスをリベールしようと難燃剤を添加しない状態の樹脂で実験を始めた。

 

難燃剤の入っていない樹脂原液を発泡体にして熱分析したところ、3次元架橋しているはずのフェノール樹脂にソフトセグメントが存在している可能性が重量減少曲線から読み取れた。パルスNMRで確認したところ明らかにソフトセグメントであることが分かった。さらに試行錯誤で触媒の種類や量を変えて製造したフェノール樹脂発泡体に含まれているソフトセグメントの量と防火性とが相関したのだ。

 

横軸に熱分析とパルスNMRで推定したソフトセグメントの量、縦軸に防火性の指標を取り、様々な条件で合成されたフェノール樹脂サンプルの測定結果をプロットしたところうまく相関した。そして、樹脂原液を販売せず、発泡体のみ販売しているメーカーの製品は、その延長線上に存在する可能性のあることが非科学的ではあるが推定された。

 

まだ検討していない条件でそのサンプルのレベルに到達できるかもしれないが、ソフトセグメントの量は反応機構から樹脂原液の影響を受ける可能性がある。さらに試行錯誤の検討を続けるのか、あきらめて別の技術手段を検討するのか迷ったが、低コストで建築基準を満たすフェノール樹脂発泡体を開発するのが目標なので、完全なリベールを断念し、コストを低減できる技術手段を検討することにした。

 

ゴム会社では樹脂原液を購入し発泡体に仕上げ天井材として販売するビジネスなので、樹脂原液よりも低コストの材料と複合化させコストを下げる開発が重要になる。安価な無機フィラー添加はその常套手段となるが、脆いフェノール樹脂をさらに脆くする。試行錯誤の実験で見いだしたソフトセグメントを減量できる対策をいろいろ考えてみた。妄想であるがソフトセグメント近傍に運動性を阻害できる無機成分を反応させれば目的を達成できる可能性が見えた。

カテゴリー : 一般 高分子

pagetop

2013.09/29 フェノール樹脂の難燃化(1)

一般のフェノール樹脂はLOIが25以上あり、空気中で自己消火性である。しかし、フェノール樹脂の発泡体は配合処方の違いで、建築基準の不燃性を満たす材料から建築基準を外れるものまで防火性が異なる。建築の難燃基準を満たすフェノール樹脂発泡体は、軽量断熱材料として天井材などに用いられている。

 

フェノール樹脂には、アルカリ触媒でオリゴマーを生成後酸触媒で硬化させるレゾール型フェノール樹脂と酸触媒でオリゴマーを生成してアルカリ触媒で硬化させるノボラック型の2種類が存在する。発泡体にはレゾール型フェノール樹脂が用いられている。

 

30年以上前に調査した時に驚いたのはフェノール樹脂発泡体に関して各社材料設計の考え方が異なっていた点である。発泡体だけ販売するメーカーから、樹脂原液を販売し難燃性の設計をユーザーに任せるメーカーまで様々であった。また、建築基準を満たす材料として販売しながらその品質保証をしないところもあった。

 

ゴム会社では、硬質ポリウレタン発泡体の後継商品として企画していたので、社内で発泡体に仕上げ付加価値をつけて販売する方針だった。しかし、レゾール型フェノール樹脂原液を購入し発泡体を合成すると、どこのメーカーの原液を使用しても建築基準を満たす発泡体が簡単にできなかった。LOIまで様々な発泡体ができた。驚いたのは重合条件を少し変えただけでLOIが10以上も変化するフェノール樹脂があったことだ。

 

とりあえず各社のモデルサンプルを徹底的に解析し、処方設計しようという方針が出されリバースエンジニアリングを始めたのだが、三次元に架橋したフェノール樹脂の解析は難しかった。1社ずば抜けて難燃性の高い商品を出していたところがあり、とりあえずその商品について徹底的に化学分析を行ったが、驚いたことに難燃剤が検出されない。

 

この一社集中リバースエンジニアリング作戦はタマネギの皮をむくような結果に終わり、難燃剤を使用しなくとも建築基準を満たすフェノール樹脂発泡体ができることだけが唯一の成果だった。

 

カテゴリー : 一般 高分子

pagetop

2013.09/28 科学より先行する技術

ゾルをミセルとして用いたラテックス重合技術は科学よりも先行していた。科学の時代において科学で明らかになっていない現象でも技術で機能が実現され活用されている事例は多い。

 

例えば、フローリーハギンズの理論で否定される組み合わせのポリマーアロイは多数ある。コンパチビライザー無添加でポリオレフィンとポリスチレンを相溶させた例や、PPSと様々なナイロンを相溶させるプロセシング技術などはその一例である。

 

半導体用高純度SiCの前駆体について、反応条件を科学的に見つけるのは難しい。また30年以上前に実現した樹脂補強ゴムも、試行錯誤で発見された配合処方である。これら科学的ではない技術成果はなかなか世間から注目されない。もっとも試行錯誤で実現された技術は、科学的に解析した場合にブラックボックスとなるケースが多い。iPS細胞のヤマナカファクターもテレビでその発見手順が公開されるまでどのように発見されたのか誰も分からなかった。

 

あまり関心が持たれていないがゾルをミセルに用いたラテックス重合技術は、有機無機ハイブリッドを製造する簡便な方法である。超微粒子が高分子中で凝集しない状態を容易に製造可能で、応用範囲は広いはずだが学会発表を行っていないので、特許はあまり出願されていない。

 

すでに特許は公開されているがPPSとナイロン樹脂を相溶させるプロセシング技術は、ウトラッキーのEFMのような生産上の制約がなく、様々なポリマーアロイ創出に利用可能な技術である。おそらくこのプロセシング技術については関連する研究が今後報告される可能性がある。高分子自由討論会では2件研究報告がアカデミアからあった。

 

ポリオレフィンとポリスチレンを相溶したポリマーアロイではクロスニコルで暗くなるので位相差板に応用可能である。これはポリスチレンを合成した会社から特許が出ていた。

 

TRIZやUSITを導入する企業が多いように科学的方法が重視されている。確かに科学という思想は、20世紀の技術開発スピードを加速し多くの発明や発見に寄与してきた。しかし、失われた10年が20年となり、そろそろ新しいイノベーションが求められているところへ山中博士のノーベル賞受賞という話題が昨年あった。この受賞の意味するところは技術が科学を先行した点が重要で、ヤマナカファクターを見いだすのに非科学的方法を躊躇無く採用している。

 

科学は役にたつ思想である。しかし、それだけでは新しいイノベーションは難しく、有史以前から人間の営みとして行われてきた技術を今風にアレンジし日々の開発に活用することで、科学にとらわれすぎて見落としてきた新たな現象を発見できるのではないかと考えている。非科学的方法ではあるが、弊社の研究開発必勝法プログラムの目指すところである。

 

カテゴリー : 一般 高分子

pagetop