活動報告

新着記事

カテゴリー

キーワード検索

2012.08/27 研究開発におけるコーチング(事例1)

10数年前からコーチングブーム(最近は?)ですが、研究開発の現場に限定した効果的なコーチング方法を聞いたことがありません。10数年前にコーチングの研修を受けましたが、そのままでは研究開発の現場でうまく使えませんでした。部下から「急にどうしたのですか?」と上司の変化にとまどう質問までされました。コーチングされる側の研修も必要などと開き直ってみてもマネージャーとしての成長が無いので、部下の顔色を見ながら工夫してきました。その結果たどり着いたのは、研究開発の現場では、それなりのコーチングスタイルが昔から実践されていたのではなかろうか、という結論です。すなわち優れた技術者ならば自分の経験知をその人なりの方法で伝えようとするものです。30数年の研究開発現場で出会った優秀な技術者は皆そうでした。その中でも新入社員時代に出会った指導社員は、大変教育熱心な人でした。例えばゴム練りの技術の指導では、以下の手順でした。

 

1.ゴムサンプル作成のための実務上必要な知識と作業を一通り短時間で指導。

 

2.あるサンプルの処方とその処方で作成された標準ゴムサンプルを提示し、新入社員にサンプル作成を指示する。

 

3.新入社員が作成したゴムサンプルの物性と標準ゴムサンプルの物性との比較を行い、議論する。

 

 

たった1処方ですが、標準サンプルと同等レベルの物性を備えたサンプルが得られるまでに1週間ほどかかりました。加硫ゴムというものはプロセスの影響を大きく受けますので、実験段階でもあるレベルまでのゴム練りのスキルが要求されます。そのスキル会得の目的と加硫ゴムについて理解を深めるために1週間という練習時間をくださったわけですが、その時行ったなぜ標準サンプルとの差がでるのか、という議論が、今から思えば研究開発におけるコーチングの優れた見本のように思っています。

 

この議論は、毎日同じパターンで行われました。すなわち、標準サンプルと練習で作成したゴムの物性比較を行い、劣っている物性について、その原因を議論する、材料開発ではおなじみのパターンです。毎日同じゴム処方で実験を行っていましたので、要するにゴム物性のばらつきを議論しているにすぎないのですが、ゴム物性のばらつきがプロセス因子にどのように影響を受けるのか明確ではない時に、それを学ぶには良い手段ではなかったかと思います。毎日同じ処方を同じプロセスでサンプル作成していたのですが、不思議なことに数日で物性が安定して出るようになりました。スキルが向上しただけですが、毎日の議論のおかげで加硫ゴムの理解が深まっただけでなく、原材料からプロセスを経て形になるまでのスキルやどのように観察をすれば良いのかなどの暗黙知を身につけることができました。この暗黙知は担当した防振ゴム開発で新たなアイデアを引き出す基になっただけでなく、30年経って担当した樹脂開発でも新たなアイデアを生み出す原動力になっていたと思います。

カテゴリー : 高分子

pagetop

2012.08/26 高分子の混合

異なる種類の高分子を混合(ブレンド)するときにフローリーハギンズ理論を最初に勉強する。そして、χパラメーターを考慮してブレンドする組み合わせを考える。ポリマーアロイはこのような手順で設計するもの、と思っていた。しかし35年前の新入社員時代に指導社員O氏から教えて頂いたのは、新しい材料を開発したければブレンド系の材料設計において高分子物理を信用してはいけない、というアドバイスでした。

 

30年経ち、高分子シミュレータOCTAが登場して高分子物理の成果を容易に可視化できるようになりました。OCTAは複数のプログラムの総称で、高分子のブレンド系シミュレーションではSUSHIを用います。SUSHIの計算でもχパラメーターを使用するので指導社員O氏の言葉によれば、計算結果を信用できないことになるが、いろいろ計算してみると分子構造の組み合わせによらずχに左右されて計算結果が異なって出ていることに気付く。おそらく指導社員O氏がアドバイスしたかった本質はここにあったのでしょう。

 

7年ほどセラミックスの研究開発に専念していたので、高分子材料開発歴は25年でありますが、その大半はブレンド系高分子材料を扱っていました。その経験から、おおざっぱにはフローリーハギンズ理論が当たっているかもしれないが、この理論を拡張あるいは修正しなければ説明のつかないブレンド系高分子およびその現象が多く存在する、と感じています。高分子物理の進歩に期待するところが大きいですが、指導社員O氏の言葉を借りれば、科学が遅れているので今でも錬金術のような怪しい方法で材料開発できる面白い分野、という見方もできます。

 

但し35年間に高分子物理は着実に進歩しており、低分子をポリマーアロイへの分散するときにはSUSHIの情報を材料設計に使えますので、OCTAを若い人が勉強する価値は十分あります。

 

 

弊社では本記事の内容やコンサルティング業務を含め、電子メールでのご相談を無料で承っております。

こちら(当サイトのお問い合わせ)からご連絡ください。

カテゴリー : 高分子

pagetop

2012.08/25 高分子のツボセミナーについて

高分子のツボセミナーは、教科書ではありません。高分子材料を扱うときに、最低限これだけは知識として身につけていて欲しい項目だけをまとめました。高分子物理を重視し、その結果高分子重合の単元を省略しております。

 

40年前の大学における高分子の授業は、高分子合成化学が中心で、高分子物性については分析技術の一分野として扱われていたように記憶しています。しかし、実務で高分子を扱うときに、高分子重合に関する知識が重要となるシーンは少なくなりました。20年前にブリヂストンからコニカへ転職しましたときに、ラテックス重合を担当しましたが、商品開発を指向した研究開発現場では重合の知識よりも単膜の評価技術の方が重要でした。しかし、商品の品質と高分子材料の関係で問題が発生したときに、高分子物理を実務の視点でご指導してくださる先生の少なさに悩みました。物性評価技術は企業のノウハウ、と言ってしまえばそれまでですが、知識の整理の仕方だけでも実務寄りにして頂けると初心者にはありがたかった。実務2-3年の若い技術者を大学の先生のところへ質問に行かせても、問題解決につながるアイデアを持ち帰った確率は低く、さらに部下の力不足のせいにするにはかわいそうなこともしばしばありましたが、この問題は、大学の先生に責任があるのか、というと、大学の先生の使命を考えた場合に”?”である。むしろ技術情報を商売とするセミナー会社が生まれた背景となるのでしょうが、企業で20年研究開発マネジメントを行ってきて、大学とセミナー会社の隙間を埋めるサービスが必要と感じるようになりました。電脳書店設立の動機ですが、その思いから高分子のツボセミナーを販売しています。

 

カテゴリー : 一般 宣伝 電子出版 高分子

pagetop

2012.08/24 中国語基本5文型(無料版)について

昨年の活動成果の一つに国内で販売されている数冊の中国語文法書を研究し、まとめた「中国語基本5文型」があります。

 

参考書として何冊も文法の入門書を買い込み、中国語のパターンを拾い上げ、整理していったのですが、驚いたのは国内で販売されている中国語の入門書の品質の高さである。見た目の違いはありますが、文法書に取り上げている項目とその説明は皆同じ内容でした。当初中国語には方言が多い、と聞いていましたので、当然文法書のばらつきもあるだろうと予想し複数買い込んだのですが、どの入門書も取り上げている内容は、ほぼ一致していました。どの入門書も同じなので、どれを基準にしても良い、という結論になるわけですが、明快な説明という観点で、大東文化大学瀬戸口先生の「完全マスター中国語の文法」を基準に選び、この本よりも単純明快なまとめを目指しました。それで、「5文型+その他」でまとめ上げ、会話パターンとセットで完成したのが電脳書店で販売している4冊です。4冊の中身は同じですが、ユーザーの学習の好みに合わせて編集を工夫しました。自分の学習スタイルに合わせて1冊を選んでください。

 

ところで、中国語が5文型にまとまる、とは市販の文法書に書かれていませんので、販売するに当たり、上海の中国人の友人及び瀬戸口先生にご相談しました。中国人の友人は、中国語が5文型に整理できたことにびっくりしていましたが、瀬戸口先生は、中国語文法の研究者は皆さん気がついている、とのコメントをくださいました。5文型にまとめたことが間違いではないことを確認できたので、会話らしい例文を中国人に作文して頂き、出版いたしました。出版後、類似書物を調査しましたが都内の書店5店舗を探しましても同様の本が存在しない、ということで今回5文型を普及する目的で無料版を公開することにいたしました。是非ご活用ください。なお、無料版ということで、音声は入っていませんが、そのかわりピンインの読みを入れております。その他有料の製品版から会話編や一部の章を抜いておりますが、5文型の内容は製品版と同一です。(5文型に絞りましたので携帯端末で読みやすくなったかもしれません。)

 

カテゴリー : 電子出版

pagetop

2012.08/22 カオス混合

新入社員時代に防振ゴムの開発を担当しました。指導社員が大変優秀なレオロジーの専門家で、混練技術に関し、教科書に無い知識をいろいろと教えてくださいました。その学んだ知識の一つで、カオス混合という混練方法について、当時文献を調べてもどこにも載っていません。言葉を教えてくださいました指導社員の方に達成方法を質問しましても「層流状態で如何に効率よく混合を達成するかという難しい技術だ、君ならできる」とからかわれた思い出があります。同僚の方に伺いましてもご存じの方はいませんでした。当時は学会で話題にもならなかったカオス混合ですが、21世紀に入りましてから時々耳にするようになりました。カオス混合という言葉を聞く度に、指導社員の方の「君ならできる」という言葉を思い出しましたが、写真会社の仕事で高粘度の高分子の混練技術はあまり関係がありません。

 

しかし、6年前高分子の押出技術を担当するチャンスに恵まれました。高分子の押出加工では、層流が発生します。それを観察すれば、カオス混合について何かヒントがつかめるかもしれない、と思いました。担当して1年、カオス混合に似ている新しい混練技術を開発することができました。新しい混練技術では、非相溶系であるPPSと6ナイロンを相溶状態にできます。この系ではスピノーダル分解速度が遅いので、ペレット状態でも相溶したままになります。技術開発はできましたが、残念ながら十分な研究ができないまま定年退職となりました。カオス混合は難しい技術ですが、指導社員の「君ならできる」という激励の言葉のおかげでサラリーマン技術者の間に何とかそれに近い技術を開発できる幸運に恵まれた、と35年前の出会いに感謝しました。

 

弊社では本記事の内容やコンサルティング業務を含め、電子メールでのご相談を無料で承っております。

こちら(当サイトのお問い合わせ)からご連絡ください。

カテゴリー : 高分子

pagetop

2012.08/21 事例2続き

ある命題の対偶を用いてアイデアを出す、と言うことの有効性に気がついたのは、入社して間もない頃です。

 

タイヤの構造開発を担当している職場で新入社員研修していました時に、「できない、ということを言うな、できると思って考えろ」と大きな声が聞こえてきました。すごい会社だと思いました。同期の友人は、「カンと経験と度胸、この3拍子が大事な会社」と茶化しましたが、私は少し考え、「なるほど」、と思いました。

 

物事を考えるときに否定的に考えていますと、否定的なアイデアばかり出てきますが、肯定的に考えますと肯定的なアイデアが出てきます。これはおそらく当たり前のことなのでしょう。対偶では、否定は肯定に、肯定は否定になりますから、対偶で考える、とは「モノができる方向の命題」に変換して物事を考えると言い換えることもできます。恐らく、「できない、ということを言うな、できると思って考えろ」と言わずに、「命題を対偶に変換して考えろ」と指導していたなら、同期の友人が茶化すこともなかったかと思います。

 

哲学者イムレラカトシュは現代の科学では否定証明しかできない、と申していましたので、科学的論理で完璧に否定される現象はさすがに不可能でしょうが、科学的に否定できない目標については、まず「できる」と考えて取り組む姿勢が技術開発の場合に大切だと思います。そしてその次に大切なのは、より良い解決策で取り組む習慣だと思います。そのためには弊社が提供するK0チャートとK1チャートは有効です。

 

カテゴリー : 一般 高分子

pagetop

2012.08/20 アイデアの出し方(事例2)

30年ほど前に半導体用高純度炭化珪素という素材を開発し、高純度炭化珪素の事業を立ち上げた時の経験談です。この材料は、パワートランジスタ用のSiCウェハーや、SiCヒーター、その他半導体用冶工具に使われており、基礎研究の反応速度論は私の学位論文になっていますので国会図書館で閲覧可能と思います。技術の詳細は公開資料を見て頂くと本事例の意義等ご理解頂けると思いますが、30年前には誰も実験をしようとしなかったアイデアをどのようにひねり出したかという体験談です。今では大したアイデアではありませんが---

 

炭化珪素を合成するためには、炭素源となる材料と珪素源となる材料を均一に混合し、1500℃以上の高温度で反応させる必要があります。当時炭化珪素を高純度化する方法の開発が盛んに行われており、「炭素源としてフェノール樹脂を、珪素源として高純度シリカ」を用いる組み合わせ、あるいは「高純度炭素粉と珪素源としてポリエチルシリケート」を用いる組み合わせも検討されていました。しかし、「炭素源としてフェノール樹脂を、珪素源としてポリエチルシリケート」を用いる組み合わせに関しては、特許も含めて全く技術情報が存在していませんでした。高分子の研究者ならばすぐにその理由がわかると思いますが、「この組み合わせで均一な混合物を得ることができない」、ということが常識だったからです。理論的にもフローリーハギンズの理論から相分離する組み合わせで、この検討を行う動機となる(素直な?)科学的根拠は、均一に混ぜるために他の化合物を添加する(不純物になります)方法以外に見当たりませんでした。科学的には否定される(ような)組み合わせでしたので、私の学位論文では、均一な化合物ができているところから始まっています。均一な化合物を合成する過程そのものも科学的に取り組むならば、学位取得者が2-3人出そうな分野であり、私はそこを自分の研究対象から外しました。しかし、科学的に「完璧に」否定できなかったので、当時の科学的常識では説明できないことを技術として完成させることにチャレンジしました。

 

科学的に「完璧」に否定できなかった理由として、リアクティブブレンドの可能性があったからです。今ではリアクティブブレンドは常識ですが、当時はまだゴムの改質技術として一部で使用されているだけでした。「AとBが混ざらないならば均一な物質はできない」というのが常識で言われていた命題でしたが、この対偶は、「均一な物質ができるならば、AとBがまざる」となります。AとBが必ずまざる可能性としてリアクティブブレンドが浮かび上がりました。論理学である命題の対偶どおしは真である、すなわち対偶の関係にある命題は同じ結果が得られますのでアイデアを考えるときに便利です。ある命題を考えていてアイデアが出ないならば、その対偶の命題を考えるとアイデアが出やすくなることがあります。

 

 

カテゴリー : 一般 高分子

pagetop

2012.08/18 テルマエロマエと霊感

天才とは99%の努力と1%の霊感、というのはエジソンの有名な言葉ですが、この言葉の意味に関して、「天才には努力が必要」という意味と、「1%のひらめきが無ければ99%の努力は無駄である」という意味の2通りあるそうです。後者の意味の存在を知ったのは10年ほど前ですが、後者は発明という行為を知らない日本人がエジソンの言葉を誤訳した、と思っています。また、後者は「努力」という行為を軽視しているように思います。曖昧な目標に対する努力は無駄になる可能性が高いですが、正しい明確な目標に対する努力については、必ず何か成果が出ると思っています。さらに、ひらめきが努力の結果生まれることも経験しています。エジソンの言葉は凡人が発明に対して努力するときの激励文と捉えています。

 

さて、1ケ月前家族でテルマエロマエという映画を見ました。古代ローマ時代の浴場と、現代の日本人の風呂好きをテーマにしたコメディーで、マンガ大賞を受賞したマンガを映画化したものです。現代日本にタイムスリップした古代ローマ人の浴場設計技師が、日本の風呂に使われている技術を古代ローマの浴場設計で実現する、というストーリーで、久しぶりに大笑いする映画を見ました。アニメではなく阿部寛主演の実写版で、発明という行為を豊富なお笑いのアイデアでうまく表現していました。作者の意図がそこにあったかどうか不明ですが、浴場設計技師の霊感がタイムスリップによりもたらされた、という荒唐無稽のシナリオは、体験からアイデアが生まれる、あるいは努力の結果アイデアが生まれると作者が言いたかったのではないか。単なるマンガなので、そこまで作者は意図していなかったかもしれないが、知らないうちにテルマエロマエを見ながらエジソンの言うところの霊感について考えていました。現代技術の塊の風呂の設備を古代ローマで実現する作者のアイデアもたいしたもので、新発明の古代ローマの浴場は、役者の大まじめなリアクション以上に笑えるシーンです。

 

エジソンの有名な激励文に使われている霊感が、天才だけの特権ならば、凡人が日々発明に汗を流す努力は無駄かもしれませんが、もし霊感を誰でも持つことができるのであれば、すなわちテルマエロマエのタイムスリップに相当する方法があるならば、多くの発明を生み出すことに貢献できると思います。弊社で考案したK0チャートとK1チャートによる思考実験のシナリオ作成と思考実験の実行は、テルマエロマエのタイムスリップと同じような効果を期待できます。

カテゴリー : 一般

pagetop

2012.08/17 科学の無い時代の思考

マッハ力学史には科学の無い時代の思考方法が紹介されています。

例えば万有引力の法則を発見したニュートンの思考実験。

 

マッハはニュートンの思考実験を非科学的と認めつつも新しいアイデアを生み出すのに有効な方法としてアインシュタインに紹介しています。そして、紹介されたアインシュタインも非科学的と思いつつそれを用いて相対性理論を生み出しています。

 

思考実験をどのように行えば良いのか?残念ながらマッハ力学史には思考実験の有効な進め方が書かれていません。弊社で販売中の研究開発必勝法プログラムでは、K0チャートとK1チャートを用いて思考実験のシナリオ作成を行います。これは、私自身30年間研究開発の現場で行ってきた方法で、TRIZやUSITのように科学的ではありませんが新しいアイデアを出すには有効な方法と思っています。この方法を用いて、フローリーハギンスの理論では非相溶系で均一にならないとされる高分子の組み合わせでも、均一に混合できる混練技術を開発しています。すでにコニカミノルタから特許が公開されていますが、PPSと6ナイロンの組み合わせで透明な樹脂液が混練機から出てきたときには感激しました。現代の科学の視点では非科学的成果ですが、哲学者イムレラカトシュの言葉「現代の科学で完璧にできるのは否定証明だけである」という名言を思うとき、新しいアイデアは科学的制約の中では生まれにくいように思います。科学的制約を離れ、目の前の現象の観察を注意深く行い自由な発想を進めることこそ重要と思います。PPSと6ナイロンの相溶化技術はそこから生まれた非科学的成果です。

カテゴリー : 一般

pagetop

2012.08/16 前向きの推論の問題

目の前に問題があり、その解決策を考えるときに、一般的には仮説を立て、前向きの推論を展開します。学校でも基本の推論の進め方として前向きの推論を最初に教えます。集合と論理のところで、推論には逆向き(後ろ向きと説明されていますが)もあることを学び、必要十分条件という大切な言葉を知ります。すなわち厳密な証明では、前向きの推論と逆向きの推論の両方で真になることを要求される、と学びます。

 

逆向きの推論では、一発で結論に結びつく解決策が得られますが、前向きの推論では、複数の解決策を考えることになります。なぜこのようなことになるかは、論理学の教科書に任せますが、必要条件と十分条件という事柄と関係しております。前向きの推論では、複数の解決策を考えますが、その中に本当の解決策では無い場合も含まれています。そこで仮説に基づく実験を行い、正しいかどうか確認をしているのです。日々の研究開発では、余裕のあるときにはこれで良いのですが、余裕の無いときには、正しいかどうか不明の場合でも結論を出してしまう間違いをしてしまいます。先日の電気粘性流体の事例におけるプロジェクトメンバーはまさにこの間違いをしたわけです。

 

これを防ぐにはどうしたらよいか。それは逆向きの推論を行い、結論に直接結びつく解決策を見つけておいて、前向きの推論を展開すれば良いのです。前向きの推論で見いだされた解決策の中には、逆向きの推論で見いだされた解決策も必ず含まれており、それは必要十分条件に相当する解決策です。実務においては、ケンシューオリジナルのK0チャートとK1チャートが役に立ちます。研究開発に必ず成功する解決策を迅速に見いだす手法を提供しています。

 

カテゴリー : 一般

pagetop