コンピューターで問題を解くときにはプログラミングスキルが必要になる。MS-エクセルのような表計算ソフトウェアーにもソルバーが用意されているので単純な問題であればそれで解くことができる。
少し込み入ってくるとビジュアルBASICを立ち上げる必要が出てくるが、一応MS-エクセルはそれなりの道具として使える。オブジェクト指向も実装しているので昔よりはバグを抱え込みにくくなっている。
もし、オブジェクト指向で問題を解きたいならばC#をお勧めする。おそらく安価なプログラミング環境としてC#はビジュアルBASICよりも使いやすい。
お金をかけたくないというならば、Pythonが唯一の選択肢となる。理由は各種ライブラリーも無償提供されているので、C#よりも費用がかからない。
Pythonを使うならばエディターはVisualStudioCode(VSC)をお勧めする。ジュピターノートブックとかその他無料エディターがあるが、VSC環境でもジュピターノートブック的プログラミングが可能だ。
おそらくPython用エディターとしてVSCが最も使用されているのではないか。無料にもかかわらず、どんどん機能アップされている。
C#とPythonの比較はナンセンスである。無償でガンガン使いたいならPythonと決まるからである。それではC#は不要か、というとそうではない。計測器の制御とか行おうとすると、PythonよりもC#の方が便利だ。
また、大規模プログラミングを行いたいならば、C#の方が安全だ。Pythonでもオブジェクト指向が実装されているので大規模プログラミングが可能だが、C#との比較になるとやはりC#となる。
ゆえに今の時代、大人がプログラミングスキルを学びたいならば、まずPythonを学び、それでオブジェクト指向に慣れてきたらC#を学ぶという手順が良いかもしれない。
Pythonが不得意なところをC#で記述し、両者の混合プログラミングも可能な仕掛けがそれぞれに用意されている。C#でPythonを呼び出す方がプログラミングしやすいので当方はC#で大枠を書き、細かいところをPythonで記述し、それを呼び出す手順であるが。
カテゴリー : 一般
pagetop
コンピューターを使って問題を解くことは、大型コンピューターの時代には専門家しかできなかった。それがマイコンの普及により、専門家以外でも可能となった。
ただし、誰でもそれが可能となったわけではなく、専門家以外の人の場合には、オタクとか呼ばれ一部の物好きか趣味人に限られた。日曜プログラマーなる言葉も普及し、コンピューター関係の雑誌が多数発刊された。
16ビットの時代にはCマガジンという特定の言語についての雑誌も刊行されている。しかし、Windowsが普及すると、次第にそれらの雑誌も廃刊になっていった。
日曜プログラマーがいなくなったわけではなく、オフィス系のソフトが普及し、例えばエクセルではビジュアルベーシックを立ち上げれただけでなく、ソルバーという仕掛けがアイコンとして用意され表計算機能も充実したので、実務家の誰でもコンピューターを使って問題を解けるようになった。
そして、学校教育でプログラミング教育の必要性が議論されるようになった。かくして数年前からプログラミング教育が始まったのだが、その子供たちが社会人となる前に生成系AIの時代になり、キーボードを叩ける人の誰もがコンピュータを利用して問題を解く時代になった。
生成系AIでは、ラブレターも書けてしまうのだ。かつては、悶々と一晩かけて、それでも満足できず、最初に紙くずとしたものを広げ、悩んでいた時代ははるか昔になった。
カテゴリー : 一般
pagetop
沈没したタイタニック号を観光する目的の潜水艇タイタン号は、信号が途絶えた瞬間に破壊していた可能性がある。すなわち救助隊の活動が始まる前に水圧で破壊していた可能性があるとのニュースが報じられた。
タイタン号の構造について詳細は不明だが、これまで何度も深海の潜水に使われたが事故が無かった、と観光の主催者は述べていたが、点検をどのようにやっていたのかという発表はない。
さて、まだ詳細な事故に関する発表は無いが、潜水途中で水圧で破壊したならば、潜水艇の構造体が疲労破壊した可能性が高い。
潜水艇は十分な圧力に耐えうるように設計されていたというが、何度も潜水に使用されて構造体が疲労破壊する可能性まで考慮されていなかったはずである。
なぜなら構造体はFRP製とニュースに記載されていた。金属やセラミックスの疲労破壊に関してほぼ形式知が完成したと言われているが、それでも御巣鷹山の事故が起きている。
未だ疲労破壊の形式知が完成していない非金属材料の高分子複合体でどのように検査していたのか疑わしい。金属では非破壊検査の手法が知られているが、高分子及び高分子複合体については未だ手探りの状態である。
材料科学の形式知に詳しい人であれば、3500万円も支払ってタイタン号に乗って観光しようという気分になれないはずである。7月5日に高分子の劣化と破壊について日刊工業新聞社主催のセミナーが開催されます。
カテゴリー : 一般
pagetop
7月5日に日刊工業新聞主催により表題のセミナーが開催される。(https://corp.nikkan.co.jp/seminars/view/6553)
高分子の破壊と劣化については、金属やセラミックス同様に1970年代まで線形破壊力学として研究されてきた。当方が社会人となった時に、その研究方向の雲行きが怪しくなってきたときである。
その3年後にセラミックスフィーバーが起き、セラミックス分野では破壊と劣化に関する研究が急速に進歩した。これは、当時高効率ガスタービン開発を目標としたムーンライト計画の寄与するところだが、信頼性工学も導入されて、いすゞ自動車は世界初のオールセラミックスエンジン車の開発に成功している。
セラミックスアスカがその車で、その疾走する姿を映し出した「日本の先端技術」と言う番組は、日本中の技術者が視聴した。そのナビゲーターだった当時慶応大学学生宮崎緑氏は一躍技術者の憧れのマドンナとなった(あれから40年過ぎているので—。)。
また、セラミックス事業を行っていないメーカー1000社近くが新たにセラミックス市場に参入している。当方の在籍したゴム会社も高純度SiCを武器に半導体治工具事業へ参入し30年事業が行われた(今は愛知県にあるセラミックス事業の会社MARUWAに事業譲渡された。)。
セラミックスや金属では線形破壊力学の延長線上で形式知が体系化され、御巣鷹山の飛行機事故の裁判では、判例にフラクトグラフィーが使用されている。
ところが高分子材料の破壊と劣化問題については未だトランスサイエンス領域の学問である。日本におけるマテリアルズインフォマティクスの黎明期に線形破壊力学を持ち出し、高分子の破壊を説明していた学者がいたが、この分野の研究について無知な学者と言いたくなるような講演を行っていた。
さて、7月5日のセミナーでは、当方がSiCの破壊について研究した成果も含め講演する。すなわち改めて材料の破壊の歴史的背景から丁寧に説明し、実務でどのように対応したらよいのか、当方の体験を基に解説する。
実務で高分子材料を扱っている技術者は是非この機会に受講していただきたい。そこでは、某大学の先生のご指導を受け、アーレニウスプロットで考察を行い寿命予測した高分子材料の機能部品でとんでもない品質問題を起こした事例を紹介する。
この問題を当方が1か月程度で火消を行った自慢話となってしまうかもしれないが、実務の参考になる事例と思っている。
カテゴリー : 一般 電気/電子材料 高分子
pagetop
カオス混合装置についていろいろと実験をしてきた。その中で配合が同一でもカオス混合の有無で全く異なる物性のコンパウンドが製造されることに注目している。
・
すでに本欄で書いてきたが、プロセシングの影響を受けるので配合組成と高分子物性は1:1対応の相関をしない場合がある。しかし、高分子の高次構造と高分子物性とは1:1の相関をすると説明してきた。
・
ゆえに、カオス混合装置使用有無で異なる物性のコンパウンドが得られる理由は、カオス混合装置で高分子の高次構造が変性されているからと説明できる。
・
しかし、このような説明は一般の二軸混練機の混練能力が不十分であることも示している。このような話をゴム技術者に話すと同意が得られるが、樹脂技術者の中には異を唱える人がいる。
・
もっとも、数十年前の古い論文にバンバリーとロール混練において、ゴムの繰り返し引張耐久試験におけるロール混練時間の問題を議論していた研究があるので、カオス混合装置の取り付けにより、二軸混練機単体よりも混練が進行する事実を説明できる。
・
それでもなお異を唱えた部下がいたので、カオス混合装置を取り付けない二軸混練機で4回ほど混練したコンパウンドと1回しか混練しなかったコンパウンドの比較を行い、混練回数が進行することにより動的粘度の周波数依存性が小さくなることを示して納得してもらっている。
・
この時カオス混合装置を取り付けた二軸混練機では、たった1回の処理で4回処理した場合よりも混練が進行していた結果が出ている。
カテゴリー : 一般 高分子
pagetop
生成系AIが話題である。ただし、あまり期待してはいけない。新しいアイデアを必要とする解答が得られないからである。今騒がれているAIを使っても、解として利用できる情報が存在しない場合には、適当な答えしか得られない。
当たり前であるが、これを当たり前と捉えていない人もいるから大変である。そもそも人間よりも記憶容量の多いだけの機械を人工知能と呼んでいるのが誤りである。
科学に問うてみても科学で解答が得られないトランスサイエンスが溢れてきた世の中で、やはり頼りになるのは人間の自由な発想力なのだが、その能力を伸ばすための環境が悪くなっているらしい。
小学校や中学校の先生の質が落ちてきたことは以前より言われてきたのだが、その質の低い先生でさえも不足しているそうだ。しかし、これがあまり社会問題化していない。
先生の代わりをAIで、という発想が数十年前にもあったが、マイコンの時代にすでに結論が出ていた。やはり、人間の教育には生身の人間が必要らしい。
しかし、問題を解く技術を教えるだけならばAIでも可能で、eラーニングにもAIが導入されている。ただここで注意しなければいけないのは、問題を解く技術が身についても正しい問題を解かなければ宝の持ち腐れである。
コンピューターで問題を解く時代になってもドラッカーの名言、「間違った問題を正しく解いた答えに意味があるのか」は、まず最初によく理解しておきたい。
仮にコンピューターがどのような問題でも解ける時代になったとしても、イノベーションの方向を決める創造が必要な解答や、正しい問題を解いているのかどうかという判断は、人間が責任を果たすべき領域だろう。
カテゴリー : 一般
pagetop
マテリアルズインフォマティクスでは、ディープラーニングが用いられ、回帰や分類などをAIで行うと解説されたりする。この時AIを教師データで鍛える。教師データを使わないアルゴリズムもあるがパーセプトロンを用いた場合には必要となる。
AIがもてはやされているので、何故かこの方法が先端であり、その他は遅れた方法と誤解している人がいるが、データが50個とか100個程度しかない時には、昔ながらの多変量解析で十分だ。むしろ多変量解析の方がよい結果となる。
データマイニングにより情報処理する知恵は50年以上前から行われてきた。また実験計画法に至っては、20世紀初頭に行われている。
そもそも実験計画法という言葉の意味をご存知ないアカデミアの研究者もいる。故田口玄一先生は、タグチメソッドは実験計画法ではない、といつも言われていたが、タグチメソッドの教科書の標題に実験計画法が使われるようになった。
この経緯を知らないが、田口先生が1970年代に書かれた書籍にも「実験計画法」というタイトルのついた書籍が存在するが、タグチメソッドではなく、正真正銘の実験計画法に関する教科書だ。
さて、データが少ない時に回帰や分類を行いたいときには、弊社のサイトでも無料公開している多変量解析で十分だ、と最初に述べたが、それを実際の実験データでもプログラムを開発して確認している。
このほか、データ駆動による面白い話題がある。50年ほど前からデータサイエンスを研究開発に取り入れてきた技術者からみると昨今のデータ駆動や実験計画法という言葉には薄っぺらさが感じられる。
カテゴリー : 一般
pagetop
フィギュアスケート教室の問題が1か月ほど前からニュースとして流れている。本田氏と安藤氏は世界トップレベルの大会で活躍してきた経歴があるが、彼らの教室について指導料が高いとかモラハラがあったとか週刊誌に書かれている。
まず最初に断っておきたいのは、教室を選んでいるのは親であり学んでいるのはその子供である、という事実を理解してからこのような記事を読まなくてはいけない。
本田氏も安藤氏も趣味でスケートを行う生徒を教えるつもりはないと思っているだろう。それを当方はよく理解できる。当方は彼らと異なるが、セミナーで指導に当たる時には、受講者に技術者として成功してほしいという思いを持って指導している。
指導者はそのモチベーションを保つために思いを前面に出し過ぎる場合も出てくる。例えば弊社の場合には過剰なサービスである。価格以上の内容のセミナーを提供している。
このような視点で記事を読むと保護者の誤った考え方にすぐに気がつく。勘違いではないのだ。あくまでも間違った考え方である。
まず本田氏も安藤氏も優れた選手ではあったが、優れた指導者ではないのだ。本田氏や安藤氏よりも優れた無名の指導者はフィギュアスケート界には多い。宇野昌磨選手を育てたコーチはかつて山田コーチの無名アシスタントである。
指導方法が子供に合っていない、と感じたら指導者を変えなくてはいけない。文句を言うのは子供のためにならない。本田氏にとって、あるいは安藤氏にとって世界のトップを目指せる素質の無い子供を教えるのは苦痛なのだろう。
世の中には、才能のある生徒しか教えたくない、という指導者もいる。一方で誠実真摯に学ぼうとする生徒にはサービスを惜しまない無名の指導者もいる。後者の指導者を選ぶのが子供のためには良い。
本田氏や安藤氏に指導を受けたからと言ってトップスケーターになれるとは限らないのだ。無名であっても子供のことを真摯に思いその成長に役立つ指導をしてくれる先生を探すのは親の責任である。
カテゴリー : 一般
pagetop
研究開発において対象となる技術をどのように具体化するのかは重要である。「まず、モノ持ってこい」と言われたMOTの大家はアジャイル開発の創始者だと思っている。
しかし、ゴム会社の研究所では評判が悪かった。当方はこのマネジメントスタイルで大変勉強でき、写真会社で多くの成果を出すことができた。製品を目標とすることを否定していたゴム会社の研究所がおかしかったと思っている。
今時事業目標を目指さない研究所は存在しないと思うが、ゴム会社の研究所では社長方針さえ笑い飛ばす管理職が多かった不思議な企業研究所だった。
さて、製品を目標とした研究開発ではモデルベース開発が重要である。すなわち、製品を実現するパーツごとに市場における品質目標を明確に記述して行う開発である。
このような開発においてデータサイエンスの領域から汎用的な手法を用いるとするならばタグチメソッド(TM)が最初に候補となる。製品品質を実現するための基本機能を明確にすればその開発を実現できるからである。
その次に候補となるのは多変量解析である。その他に最近マテリアルズインフォマティクスではいろいろ言われているが、TMの視点では誤差因子をちまちまと扱うような実験を推奨しているアカデミアの先生もおられる。
これ以上書かないが、間違った研究開発の実験方法に対して注意を喚起する啓蒙書を書く必要性を感じている。研究開発の目標は、あくまでも市場に新しい価値を創造できる品質である。そしてそのロバストを実現できる計画的な実験を提供してくれるのがTMである。
カテゴリー : 一般
pagetop
昨日大阪万博の料金が大人7500円と発表された。これを安いと思うか高いと思うかは人それぞれである。おそらく3000円でも10000円でも意見は分かれると思う。
当方は中途半端な価格と感じている。いかにも大阪人が決めそうな価格である。これが名古屋人なら10000円として前売り割引価格7000円と設定するだろう。そしてだれかがチケットをかじって見せて割引価格もあるでよ、と発表したかもしれない。
江戸っ子ならば迷わず10000円ぽっきりときりのよい価格に設定し、未来のために東京の子供達には無料チケットを配ります、と知事の大判振る舞いが記事になったかもしれない。
7500円と言うのは、議論の途中で、こんなもんやろな、と手打ちしたような価格である。それならばキリの良い価格に設定し、期間を分けた数種類の前売り価格を販売すれば事前に混雑具合の見込みも立つかもしれない。赤字とならないように大雑把に決めてしまうところがいかにも大阪万博である。
規模などから20000円に設定しても良い内容になるのかもしれないので、7500円と言う価格設定を中途半端と感じている。このような博覧会は、安く設定しても高く設定しても来場者数に大きな影響はないと思う。
むしろ利益が大きく出るようにチケット価格を高く設定し、子供たちを無料にするような配慮が必要ではないか。当方が高校生の時に大阪万博を2日間見学している。それでも全館制覇は難しかったが夢を持つことができた。
カテゴリー : 一般
pagetop