アドバンスドフォトシステム(APS)という新システムがカラー銀塩フィルムの最後のシステムとしてイースタマンコダックから提案された。このAPSに使われたPENフィルムで問題になったのは巻き癖である。
PENフィルムをパトローネに巻き取り放置すると、巻き癖がつく。現像処理で巻き癖はジャムなどの問題を引き起こすので実用化に際して巻き癖がつきにくいPENフィルムの開発が求められた。
巻き癖は高分子のクリープ現象が品質問題として現れていることが分かっていた。だから科学的にはクリープが起きにくくなるように高分子の高次構造を設計すれば良い。ここまでは当時科学的な論文にも結論されていたことである。
どのような高分子でも結晶化すれば、その結晶部分はクリープが起きにくくなることは想像できる。高分子の高次構造が結晶部分と非晶部分でできているとすると非晶部分がクリープを起こしやすいであろう事は想像でき、さらに非晶部分でも密度の低い自由体積部分は他の非晶部分よりもクリープを起こしやすいであろうことも想像がつく。
そのため巻き癖を着きにくくするためには、自由体積部分を少なくできれば良い、という仮説が立つ。ただ高分子の自由体積部分に関しては今でも研究課題となる話題を事欠かない科学的に未解明な事柄が多い。だからこの仮説については、それを科学的に厳密に証明しようとすると自由体積の測定方法そのものを研究する必要が出てくる。
ところで、高分子の自由体積を少なくする方法として、高分子のTg近くで熱処理すれば良いらしいということが科学的に知られていたようだ。但しTg以上の熱処理ではフィルムがごわごわになるのでアニールはTg以下で行うことが常識として分かっていた。
ゆえにこの科学的に推定される技術が特許としてライバル会社から出ていた。ところが科学的に当たり前であるが、Tg以下の温度で24時間もフィルムを一定温度で放置しなければならないという問題があった。ただフィルムを成膜後巻き取ったまま室に放置すれば良いので問題ではない、という言い訳がどこかに書かれていた。
しかし、技術としてスマートではない。できれば成膜プロセスあるいは表面処理プロセスの途中で巻き癖解消の機能を付与できてこそ優れた技術である。APSが普及したときに備え、科学と常識からは発想しにくいPENの短時間アニール技術開発を企画した。
カテゴリー : 一般 連載 高分子
pagetop
科学の時代では科学の常識に反した現象は、否定証明により起こりえないこととしてかたづけられた。科学に反する現象を科学的に肯定証明するためには、その現象を証明するための新たな真実が必要になり、その真実を見つけることが難しい作業になる、と分かっていたからである。
科学の常識に反する現象でも、それが現場で必要な機能を提供してくれるのならば、技術で活用できるようにするのが技術者のチャレンジであり、そのチャレンジにより新たなイノベーションが引き起こされる。イノベーションが起きれば真実のヒントも見えてきて、科学の研究もやりやすくなる。
PPSと6ナイロンを相容させる技術ができてから5年経過してアカデミアから高分子材料がスリットを通過するときの現象についてモデル化した研究が発表されるようになった。すでに3報論文が出ている。
20世紀には科学が技術を牽引してきたが、科学が急激に進歩した結果、21世紀は技術が科学を牽引しなければならない時代になった。すなわち科学者の増加により科学で容易に研究できることはすべてやり尽くされたからだ。
今科学の進歩が著しいのは、かつて神の領域として倫理の問題を議論しなければならなかった分野である。高分子物理も本来は力を入れなければならない分野であるが、大変難しいのでその進歩が目に見えない。
STAP細胞に大衆が興味を示すことができたのは理解しやすいからである。分かりやすい大半の科学の問題は20世紀にほとんど解決されてしまった。その様な分野で、いま新たな現象を用いる技術開発を行おうとするならば非科学的な問題解決プロセスを避けて進むことができない。
そのとき非科学的な問題解決プロセスでチャレンジする決断がリーダーに必要になる。 www.miragiken.com には、弊社が提供するヒューマンプロセスについて二人の探偵を事例に紹介しています。
カテゴリー : 一般 連載
pagetop
昨日の話をもう少し詳しく書くと、コンパウンドの開発を外部に依頼して製品開発を進めていた体制だったので、そこへカオス混合の開発を依頼する予定でいた。しかし、外部のコンパウンドメーカーに一笑にふされ、目論見は頓挫した。非科学的な内容だったからである。
結局材料を内製化することになり、コンパウンド工場をたった3ケ月で立ち上げなければいけない状態に追い込まれた。しかし日本には粋な中小企業があり、無茶苦茶な発注を当方の依頼であれば、と引き受けてくれた。これは過去の成功体験を積み重ねてきた信頼関係のおかげで、そこの担当者と進めた仕事がすべて成功していたからだ。
非科学的な技術は、町の中小企業により短期間に生産設備へと具現化された。日本の第二次産業の良いところは、中小企業でも凄い技術を持っているところがある点である。さらに良い点は現場指向が強いので非科学的であっても実験室で実現できたならば、信用してそのとおりのものを作ってくれることである。
特注二軸混練機からPPSと6ナイロンが相溶し透明な樹液となって出てきたときには感動して涙が出てきた。教科書に書かれていない現実が目の前で起きているのである。ところがマネージャーは「本当にできたんですね。」とあっさり一言だけであった。
企業の研究開発ではイノベーションが求められているが、大抵の研究管理者はこのマネージャーと同じではないだろうか。チャレンジの意味が分かっていないのである。管理者であることを忘れ、いっしょに感動を共有して欲しかった。
カテゴリー : 一般 連載 高分子
pagetop
ホワイトボードの図は、コロイド科学の知識を単純に展開すると簡単に否定される図であった。しかし、コーチングのストーリーを考えていた時に、科学的にはナンセンスな図だが、条件が揃えば実現できる現象ではないかと考えた。
すなわちこれは、機能の実現方法を思考実験であれこれ考えて思いついたヒューマンプロセスの成果である(詳細は弊社インフォメーションセンターへ問い合わせて頂きたい)。
コアシェルラテックスの合成過程でこの現象は生じると思われたので、担当者を集めて図で彼らの思考に刺激を与えたのである。ゾルをミセルとして用いるラテックス重合技術はこのようにして1993年に生まれた。ただし科学雑誌に他の研究者の報告が初めて掲載されたのが2000年なので7年早く世界初の技術が非科学的プロセスで生まれたことになる。
また、科学雑誌の研究報告では、ミセルができているところまでの論文内容だったが、写真会社ではそのミセルを活用してラテックス重合するところまで技術を完成していた。
世界初と緒言に書かれた外国人の論文が発表された直後に推薦された技術賞では学会により対応が異なった。ゾルをミセルに用いるのは技術ではない、とアカデミアの先生に否定され高分子学会賞を逃がしたが、高靱性ゼラチン技術として写真学会ではゼラチン賞を受賞できた。
一度技術ができるとその証明を科学的に行う事は容易である。しかし、技術を生み出す過程について科学的に示すことは大変難しい。この技術開発で幸運だった点は、特許回避するために膨大な数の実験を行っていたことである。しかも特許には書かれていない条件で。
コーチングを行うときには、後者も着目した。すなわち特許に書かれていない条件ではコアシェルラテックスの合成は大変難しくなる。なぜ難しくなるのか、という点とそれを克服するために担当者はどのような実験を行うかを考えてみた。
そしてきっと失敗作の中にうまくゾルでミセルが形成された場合があるのではないか、と「想像」した。うまく安定なミセルができれば後はコアシェルラテックスよりも簡単である。単なるラテックス合成実験となる。
カテゴリー : 一般 連載 高分子
pagetop
靱性の向上手段としてコアシェルラテックスが科学的に考え出されたのだから、それを開発することこそ近道、という考え方が当時主流を占めていた。これは一つの戦術であって他の戦術も検討すべきだ、といっても言葉の遊びとして片付けられた。
担当者を集めて戦略から再検討させてみた。目標仮説は、シリカが凝集すること無く分散し、ラテックスも同様に分散している構造を有するゼラチンが高靱性になる、ということで一致した。しかし、その実現方法となるとコアシェルラテックス以外アイデアが出てこない。
ホワイトボードに目標仮説の図を書いてみた。担当者の一人がコアシェルラテックスの合成に失敗したときに、そのイメージどおりのものができている可能性があると発言した。さっそくその実験を再現し、そこへゼラチンを添加して薄膜を作製してみた。すると驚くべきことにコアシェルラテックスで補強したゼラチンよりも靱性が高いゼラチン膜ができた。
実際にはコーチングプロセスにもう少し時間をかけたが概要は上記であった。高靱性ゼラチン膜ができたとき、皆半信半疑だった。当方は可能性を信じていたのでコーチングで担当者を成功へ導くことができた。
コロイド科学の観点から否定される図を書いたところ、それに触発されて実験の失敗例を思い出し、それを追試したところゴールにたどり着いたのである。この問題解決プロセスは科学的ではない。
さらに、ホワイトボードに書かれたシリカとラテックスが凝集しないで分散している状態は、ゼータ電位の不安定性を考えると、科学的にナンセンスな図である。しかし、この科学的にナンセンスな図が、科学的に取り組んでいては絶対に発想できない新しいアイデアを生みだし開発を成功に導いたのである。
カテゴリー : 一般 連載 高分子
pagetop
問題を抱えている現象があったとしよう。その問題が困った現象を引き起こしている事が明確ならば、すぐにその問題を解決しはじめる。しかし、意思決定された目標があり、その目標に至る過程でその問題を含む現象を避けて通ることができるならば、迂回路を探す問題を新しい問題として解いても良い。
目の前の問題を解決するのか、迂回路を探すのか、これは戦術論である。多少の問題については目をつぶるという戦略であれば、戦術として迂回路を探す問題に精力を注ぐことになる。ドラッカーが言うところの「何が問題か」という問いに正しく答えるためには、戦略がまず必要である。
写真会社へ転職したときのテーマに超迅速処理技術というのがあった。これは感材の現像処理時間を短くする技術である。現像処理時間を短くするためには、フィルムを早く搬送する必要がある。また湿式現像では、素早い乾燥技術も重要になってくる。いずれもバインダーに使われている脆い材料、ゼラチンにとって厳しい課題である。
脆い物性を改善する技術として、シリカをコアにしてラテックスを殻のようにシリカのまわりに合成する技術、コアシェルラテックス技術が登場した。シリカのまわりを柔らかいラテックスで覆っているので、シリカが凝集すること無く、硬さと靱性を増すことができる技術と言われた。但し問題は多数の特許がライバル会社から出ていたことだ。
このような状況で技術者は、どのように特許を回避し新しいコアシェルラテックスを開発するのか、という問題を取り上げがちである。しかし目標は脆くないゼラチン、靱性が向上したゼラチンを開発することである。
戦略としてシリカとラテックスを用いて脆くないゼラチンを創り出すことが決まっているのであって、コアシェルラテックスを開発することが戦略として決まっているのではない、ということに気がつく必要がある。
カテゴリー : 一般 連載 高分子
pagetop
タグチメソッドを用いると実験工数を削減でき合理化できる、という誤解がある。KKDと一因子で実験を行い、ロバストの低い商品を市場に出し、クレームが来てから手直しを行う開発のほうが、初期の研究開発期間を短くできる。意図的にそのような開発をやっていると思われる商品も世の中には存在する。
ゆえに単純に開発工数の削減という視点でタグチメソッドを捉えるとがっかりするかもしれない。タグチメソッドの利点は、ロバストの高い品質を実現できる効率のよい開発法という特徴である。
市場で多くの実績があり、どのような因子がロバストに影響するのかノウハウがある場合には、タグチメソッドは面倒な開発手法に感じる。多くのノウハウがある場合には、タグチメソッドは不要かもしれない。
それでもなおタグチメソッドを使う理由は安心感である。同じ技術を新製品用に開発しているときに、タグチメソッドは退屈な実験になる。予想したとおりの最適条件が得られ、再現実験も問題なく終了し、技術が完成する。タグチメソッドがムダだったわけではない。類似結果が得られたことに安心すれば良い。
システム選択は技術者の責任で行われるが、非科学的に選ばれたシステムが正しいかどうかは実績を積み重ねて信頼性を上げてゆく以外に方法はない。もしそれが科学的に正しいと証明されたシステムでも市場のノイズをすべて実験室で確認することは不可能なので、やはり実績を積み重ねることが重要になってくる。
科学では、科学的に行われた実験でたった一つの真実でも示されたならば、それがゴールとして価値が高くなる。技術では、システムの機能が市場で安定して発揮された実績が積み重ねられて初めて価値が出てくる。
カテゴリー : 一般 連載
pagetop
基本機能の選択は技術者の責任で、その研究こそ重要だ、と田口先生は言われた。実は基本機能がわかっている状態は、機能の実現手段が明らかになっていることであり、そうでない場合には、基本機能のSN比を求めることができないので、タグチメソッドによる問題解決ができない。だから研究が必要になるのは当たり前だ。
機能の実現手段が不明の場合の問題解決をどのように行うのか。過去に科学的にこれを行う方法としてTRIZやUSITがもてはやされた時代があった。しかしTRIZやUSITは、科学的ではあるが、科学的ゆえに科学で解明されていない機能実現方法を導き出すことができない。科学的ロジックで進めるロジカルシンキングでも同様である。
科学的に解明されていない機能を「すべてを科学的に行い開発できる」というのは矛盾を含んでいると思う。しかしこの矛盾を理解できない人もいる。32年間の技術開発人生で何度も出会い、その度に非効率的な仕事をしなければいけなかった。またやりたくない否定証明を業務としてやらなければいけないときもあった。
科学的に解明されていない機能をもし使用したいならば、非科学的プロセスで問題解決し、技術を用いて機能を創り出すのが手っ取り早い。なぜなら多くの学者が科学的に取り組んできて解決できていない現象を、凡人に一朝一夕に解決できるはずがないからだ。
また、これまでの科学分野におけるイノベーションが科学的に導き出された成果ばかりではないことに気がつくと、非科学的プロセスの重要性を理解できる。「非科学的プロセス」を科学的に管理(注)し誰でも同様の成果が得られるようにできれば、それはイノベーションを起こしうる汎用的な問題解決法と思われる。
話がそれるが、タグチメソッドについて田口先生におそるおそるこのような考え方でタグチメソッドは非科学的ではないか、と質問したら、田口先生は穏やかにタグチメソッドを応用してゆく過程で非科学的なところが出てきても基本機能が正しければそれで良い、と言われていた。あくまでタグチメソッドでは基本機能が命なのである。
(注)これは矛盾を含んでいない。非科学的プロセスの節目を科学的手段でチェックすることはできる。そうすれば、真理は一つなので、通過点における判断の正しさを確認できる。全体のプロセスは非科学的でも成否が分かれるプロセスの分岐点を科学的に管理できれば、効率良くゴールにたどり着ける。iPS細胞のヤマナカファクターはこのようにして発見された。
カテゴリー : 一般 連載
pagetop
科学的に商品のスペックを記述し、それを用いて商品の品質管理を行う事が難しい場合がある。高分子の難燃性もその一つである。ゆえに高分子の難燃性という機能の品質管理では、それぞれの業界で推奨される方法、各種難燃性評価規格が決まっている。
世の中すべて科学で厳密に構築されている、あるいは世界を科学一色で記述できると信じている人は、このあたりの状況を理解できない。そもそも科学が生まれる以前にも技術の進歩があった事を知らない人が多い。科学の歴史よりも技術の発展の歴史のほうが比べものにならないくらい長いのである。それぞれの問題解決プロセスは www.miragiken.com で一例を示して説明している。
高分子の難燃化は技術で行うので、高分子の難燃化技術という言葉をよく聞くが、高分子の難燃化科学とか高分子の難燃化の科学とはあまり言わない。せいぜい「難燃化への科学的アプローチ」という言葉を使うのが21世紀の今日でも精一杯の状況である。アプローチはできても科学的な唯一の真理としての万能な方法の開発は困難である。
科学は真理を追究し、技術は機能を追究する、という弊社の考え方では、高分子の難燃化を技術として解くときに、「システムの機能」をコンセプトにして技術開発の目標を設定する。
このときよく用いるコンセプトには、「炭化促進型の難燃化」と「溶融型による難燃化」である。前者は狭義にはイントメッセント系の難燃化技術であるが、この両者で基本機能の扱いは異なる。
詳細はコンサルティング内容になるので、個別に問い合わせて頂きたい。また、今月号の雑誌「ポリファイル」に掲載された当方の論文で、このあたりのことを少し説明している。
カテゴリー : 一般 連載 高分子
pagetop
高分子の難燃化を行うに当たりシステムが複雑である、と昨日述べたが、その時のシステムの考え方について弊社のお問い合わせからメールで質問を頂いた。質問者及び質問内容の詳細は省略するが、要点は高分子の難燃化を行うに当たり、その基本機能の考え方である。
高分子の燃焼は急激な酸化反応で進行するので、それを唯一の真理として記述することは難しい。すなわち科学的に100%解析することは困難だろう。しかし、燃焼という現象の部分的な情報については科学的に解明されている。
例えば分子の酸化で過酸化物が生じ、ラジカルが生成することなどは40年以上前に論文発表されている。そして燃焼がラジカル反応で進む「らしい」ことも30年前には科学的に確定している。
ただ、一般の火災現象を科学で100%記述することに成功していない。科学の世界で火災については現在でも「群盲像をなでる」状態である。コーンカロリメーターが火災現象を再現するのに便利な評価装置であり、建築関係でも活用されているが、それでもまだ不十分である。
火災という現象が科学的に100%解明されていない状態で、科学的に高分子を難燃化する技術を開発できるか、というと難しい。しかし、現場では技術でこれを解決し商品開発しなければならない。
技術で高分子を難燃化するとは、高分子を燃えにくくする機能あるいは燃焼しても継続燃焼が難しく火が消える機能、着火しにくくする機能などを付与すれば良い。用途によっては、いずれか一つの機能があれば火災を防ぐことが可能になる場合もある。(明日に続く)
カテゴリー : 一般 連載 高分子
pagetop