酸化スズゾルに含まれている酸化スズが導電性か絶縁性か、あるいは結晶性か非晶性かは水を除去して酸化スズを取り出し分析すれば判明する。
ところが、ガラス基板に薄く塗布し自然乾燥させたところクラックが入り良好な薄膜を作ることができない。酸化スズゾルの営業担当から評価が難しいので苦労している、と説明を受けた。評価が難しい材料をどのように品質管理しているのか疑問に思ったが、指導する立場ではないので追及はしなかった。
何処かの大学の先生のご指導を受けたようだが、いい加減な先生に騙されたのだと思った。大学の先生の中には技術を理解せず適当なことを自信をもって説明される方もいるので注意しないといけない。
このゾルに分散している酸化スズが結晶かあるいは非晶かの判断については、ガラス転移点がないから結晶だと説明を受けたと営業マンは言った。どこの大学の先生か名前を出すと大学の名誉を傷つけるので書かないが、このような先生に指導を受けている学生がかわいそうに思えてくる。
高分子材料では、非晶質相はガラスと言ってもいいが、無機材料では非晶質体がすべてガラスとは限らない。ガラス相を形成しない非晶質物質も無機材料では存在するのだ。酸化スズゾルに含まれる酸化スズは絶対にガラスにならない。単なる非晶質体である。
ゆえに無機材料についてガラス転移点をもたないから結晶という判断は間違っている。ちなみに高分子の熱分析を行ったときにガラス転移点が現れないことが稀にある。
しかしそのような場合の対策については以前この欄で紹介しているのでそこを読んでいただきたいが、工夫すればそのような場合でも高分子材料では必ずガラス転移点を観察できる。
高分子は結晶化あるいはガラス化して固まるが、無機材料の中にはガラス化する組成とガラス化しない組成が存在することは、材料を扱う実務で重要な形式知である。この形式知をベースに積み上げなければいけない高分子に関する経験知が存在する。
また、実務ではこの形式知だけでは問題解決できない現象も多くあるが、形式知をベースにせず経験知を積み上げると、アカデミアとの議論がかみ合わなくなる。英語が公用語となっているように科学の形式知を整理しておくことは重要である。
形式知を整理せずに実務を進め品質問題を発生しがちなのが耐久試験のやり方である。11月7日に下記タイトルで講演を行いますので、ご興味のある方は問い合わせていただきたい。
「ゴム・プラスチックの劣化・破壊メカニズムと寿命予測および不具合対策」
カテゴリー : 一般 電気/電子材料 高分子
pagetop
酸化スズゾルは、高純度の酸化スズが水に分散しているコロイド溶液である。高純度の酸化スズ結晶については1980年代のセラミックスフィーバーの時に無機材質研究所で絶縁体であるとの結論が出された。
だから写真会社の担当者がそれを評価して絶縁体であると1991年に結論したのは、形式知から正しいように見える。
ところが特公昭35-6616という特許には酸化スズゾルに含まれている非晶質酸化スズは導電性物質であると書かれている。小西六工業の特許だが、担当者はペテントかもしれないといった。
たしかにその特許のあと当方が1992年に特許を書くまでこの技術に関して出願がなされていない。そのかわりライバル会社からこの特許公開から1年後に結晶性酸化スズや非晶性五酸化バナジウムを用いた帯電防止層の特許が出ている。
特許の中にはインチキ特許もあるので注意が必要だが、子供の頃父親が愛用していたサクラフィルムで有名な小西六工業の出願している特許である。まず信用して追試をするだけの価値があると思った。
しかし担当者は無駄だと言った。理由は昔の特許に書かれている酸化スズゾルと実験室の隅に放置されていた、市販の酸化スズゾルは同じものだったからだ。
ところが市販されていた酸化スズゾルのカタログには結晶性酸化スズゾルと書かれていた。また、その製品に関係している特許も出願されており、小西六工業の特許があるにもかかわらず成立していた。
これは市販の酸化スズゾルが特許製品であることを主張するためにインチキ特許を出願していた可能性が高い。実際に酸化スズゾルを販売していた会社の担当者に話を聞いたら、インチキ特許であるとまでは白状しなかったが、苦しい言い訳をしていた。
しかし導電性の高純度結晶性酸化スズゾルでは、高純度酸化スズ結晶が絶縁体だと発表されているので誰も買わないだろう、と言ったら、実は全然売れていません、と回答してきた。
早い話が、当時酸化スズゾルを販売していた会社の特許がインチキ(注)でインチキ特許で事業をやろうとした事情は不明だが、形式知と矛盾している説明が書かれた商品カタログでは売れないのは当たり前だ。
なんやかやと酸化スズゾルメーカーの担当者とやり取りしていたら、結晶性という言葉がカタログから消えた。
(注)このメーカーのために少し補足すると、この会社の特許に書かれた実施例を実施しても非晶質酸化スズゾルしか合成できない。しかし、導電性は悪い。ただし合成条件を変えると特公昭35-6616と同程度の酸化スズゾルになる。この酸化スズゾルについては、合成条件を変えることで100000から1000Ωcmまで100倍程度変化する。またアンチモンを添加した酸化スズゾルも販売されており、こちらは導電性が10倍程度悪くなる。これは面白い発見だった。なぜなら結晶性酸化スズでは、アンチモンをドープしない限り導電性は出現しない、すなわち高純度結晶性酸化スズとアンチモンドープの結晶性酸化スズでは、絶縁体と導体の差があるのに、コロイド溶液では導電体と半導体の差程度であり、高純度非晶質酸化スズのほうが若干導電性が高い。高度な材料評価技術を持っていないとこの材料の真の姿を見ることができない。これはアカデミアでも同様で、当方は電気物性の測定については、その評価サンプルを当方および当方の部下が完璧な状態で作成し、二か所の大学に測定依頼している。そして、それぞれの大学で一致した結果が得られているが、サンプル作成を当方らが行った背景はそれぞれの先生がサンプル状態で測定結果が変わるとの、「正しい」アドバイスをしてくださったからだ。この結果は学会発表を行っていないが、非晶質ゾルの電気特性評価は難しい。
カテゴリー : 一般 電気/電子材料 高分子
pagetop
大半の高分子は絶縁体である。高分子に導電性を持たせるためには、白川先生がノーベル賞をとられた導電性高分子を用いるか、絶縁体高分子に導電性フィラーを混ぜて半導体高分子あるいは導電性フィラーの充填率を60vol%以上添加して導電性高分子を開発する。
この時1000Ωcm前後の導電性でよければ60vol%未満でもカーボンを用いて導電性高分子を開発可能である。以前この欄で紹介したパーコレーション転移を活用すればよい。
繊維状のカーボンを利用すれば5vol%未満でも導電性高分子を製造できる可能性がある。ここで可能性があると書いたのは、実用化された商品では、まだこの程度の少ないカーボン添加量の高分子商品が開発されていない。
これはシミュレーションの結果であってこれを実現するためには、パーコレーションという現象を制御するための導電性フィラーと絶縁体高分子、そしてそれらを混ぜて成形するためのプロセシングの工夫が必要である。
この工夫の仕方はほぼ科学的に解明されており、機能実現の技術開発を行えばよいだけである。導電性フィラーについては繊維状物質を用いればよいのだが、高分子との相性の問題が出てくる。さらに繊維状物質を高分子に添加したときに混ぜるのが大変難しくなる。
ゆえに、この技術の難しさは導電性フィラーよりもどのように高分子を設計するのかという問題とプロセシング開発にあるのだが、良い導電性フィラーが無いのか、と考える傾向にある。
導電性フィラーについては、その表面処理技術が確立されているのでその情報を探すだけで済むが、絶縁体高分子とプロセシングの技術については、まだ開発しなければいけない課題が多い。
ただし導電性フィラーの表面処理については、電子のホッピング伝導ができる程度の厚みという条件が付く。
カテゴリー : 一般 電気/電子材料 高分子
pagetop
コンパウンドの品質管理はどのように行われているのか。退職前の5年間に電子写真用樹脂材料を担当し、多くの樹脂メーカーの方と打ち合わせる機会がありびっくりした。各社各様の考え方で共通していたのはコスト重視だった点だ。中間転写ベルトのコンパウンドでさえ高い費用を支払い購入していてもコストの問題でこれ以上品質管理項目を増やすことができない、と平気で答えて来た。
この場合には、品質管理項目が増えた場合に、どのような価格になるのか提示すべきと期待していたが、簡単に期待が裏切られただけでなく、コンパウンド業界を知らない、とまで言われた。このとき懸念したのはコンパウンド業界はお客に顔を向けて商売をしていない、という現実だった。驚くべきことに多くのコンパウンドメーカーが大なり小なりこのような調子で、お客に対して誠実真摯に対応してくださったのは2社程度しかなかった。
国内のこのような状況をうけて、自分でコンパウンド工場を立ち上げたり、中国ローカル企業を指導し始めたりしたのだが、国内のコンパウンドメーカーのこのような高飛車の態度がどこから出てくるのか不思議だった。ただ、成形加工メーカーを見学して気がついたことがある。それは成形加工メーカーの高分子材料技術に関するスキルが著しく低いのだ。高分子材料技術に関する担当者がコンパウンディングに関して工場見学をした経験はあっても、その実務を御存じない。
知識の獲得ができていないだけでなく、知識に対する関心もない担当者もいた。すなわちコンパウンドについては、コンパウンドメーカーの言いなりになっている状態だった。さらには、出来の悪いコンパウンドでも成形できるのが成形技術と豪語する担当者もいた。すなわち業界の構図がコンパウンドメーカーにコストだけを考えるような仕組みになっていたのだ。
出来の悪いコンパウンドでは、必要な物性を満たす成形体ができないことを中間転写ベルトの事例で示した。このとき出来の悪いコンパウンドとして2種類あり、まったく材料設計ができていないコンパウンドと正しい材料設計はできているがその設計を維持するための品質管理ができていないコンパウンドである。
成形加工メーカーは、出来の悪いコンパウンドとして、後者だけを考えているように思われる。すなわち性善説的な考え方だ。ところが中間転写ベルトのコンパウンドを供給していたような性悪説で考えなければいけないコンパウンドメーカーも存在するのだ。成形加工メーカーは、コンパウンドメーカの品質管理技術を指導できるぐらいのスキルを身につけなくてはいけない。
カテゴリー : 電気/電子材料 高分子
pagetop
レシプロエンジンで発電し、それを電池に一度充電してからモーターを動かす、あるいはレシプロエンジンで発電されたエネルギーでモーターを動かすというシステムは、高速走行ではもっぱらガソリンエンジンを使い、日常走行では、力の足らない部分をモーターで不足するトルクを補ったりするハイブリッド方式よりも燃費が悪いと推定された。
それゆえ,複雑なハイブリッドエンジンが考案され、トヨタやホンダが積極的に展開し成功した。実際にハイブリッド車のカタログ燃費は、同等排気量のガソリン車と比較しおよそ倍ぐらいである。
但し実燃費はカタログ燃費よりも極端に悪くなることもあるが、走り出すときに低回転で高トルクを発生するモーターのおかげで乗り味に高級感が出てハイブリッド車は社会に受け入れられた。
トヨタやホンダは高級車から大衆車まで競ってハイブリッド車を展開している。タンデム自転車を若者がこぐ模型とそれを年寄りがこぐ模型が作られ、それによりホンダが奮起してレシプロエンジンを改良した話題はニュースになった。
しかし、技術の進歩により皮肉なことに日常の運転条件では、ハイブリッドよりも効率が悪いと思われた日産自動車のe-Power方式がシステムとして優れている状態を創り出した。
すなわち、日常の運転では、車は必ず一旦停止を繰り返したり、加速しても減速することを強いられる。この時のエネルギー回生技術が進歩し、この技術をうまく組み合わせるとエンジンで発電してモーターを動かすというシステムの非効率性を補うことができるようになった。
また、アクセルペダルは、モーターの回転制御すなわち電力調整ペダルだけの役目を果たせば良いので、車が減速し停止するときにレシプロエンジンで使用しているようなブレーキ動作が不要になる。遊園地の自動車のようにアクセルペダルの操作だけで運転が可能になった。
それだけではない。ハイブリッドエンジンではレシプロエンジンも走行用に用いるのでその回転数を頻繁に変動する必要があるが、これを発電用だけに使用すれば、最もエネルギー効率の高いところにおける定速運転となるので、日産方式でもそれほど燃費の悪化につながらなかった。
その結果、日産ノートは実燃費においてアクアを抜いてしまった。カタログ燃費こそ同じような値だが実燃費ではノートの方が良くなるとの評判である。
その結果、技術としては劣っていたはずの日産自動車がうまくPRして消費者に支持されるようになった。おそらく、今後ハイブリッド車よりも日産自動車の方式の車が多数出てくるのかもしれない。
例えばマツダのロータリーエンジンは、発電用に特化すれば大変小型化でき、エネルギー効率の良い条件で運転も可能となるので日産自動車の方式に向いている。
日産自動車ノートの成功例は、技術をどのようにPRしたら社会に受け入れられるのかという参考になる。科学的に見れば劣勢でも技術として捉えたときに優れておれば良く、そこをうまくPRすればよいのである。
面白いのは日産方式でもエンジンとモータを使うのでハイブリッドと呼べるのだが、そこをトヨタと差別化しアピールするためにハイブリッドと呼ばずePOWERと呼んでいる。
余談だが、中国蘇州の街中では10年以上前から安っぽい赤色の電気自動車がたくさん走っており、日産方式のどこに先進性があるのか当方には理解できなかった。2ケ月前セールスマンの積極的な売り込みにもかかわらず燃費の悪いターボ車で4駆のジュークをあえて選んだ。
ところが驚いたことに冬場の街乗りで平均燃費が9.2km/lで、昔のターボ車のイメージと大きく変わっておりびっくりした。恐らく夏場ならば10km/lを超すだろう。おまけにランサーエボリューションより安いが、トルクベクタリングという凝ったシステムもついている。
ePowerノートと同じような値段で、内装はチープだがドアの開け閉めの音やコーナリング時の挙動など高級車に負けていない。デザインも飛んでいる。今最もコストパフォーマンスの好い車はこのジュークとスバルインプレッサだ。インプレッサは一クラス上のレボーグと同等以上の乗り味である。ドアの開閉音は高級車のそれで、内装はスバルとしては頑張っている。
「いつかは、クラウンーーー」というCMが昔あり、いつかはクラウンに乗りたいと思っていたが、クラウンの乗り味よりも値段の安いマークXの方がBM*に似ていた。おまけに電子制御のサスペンションがついており、高速走行の気持ちよさは外車のそれである。
一方今やクラウンよりも高級なレクサスがトヨタから販売されている。レクサスの高級感は外車以上で何よりも販売店の応対がすごい。思わず車の購入検討にスーツで出かけたくなるような雰囲気だが、ハイブリッド車を進められるとがっくり来る。
おまけに動力システムは一世代前のプリウスと同じである。同じホットハッチならばジューク1.6GT fourのほうが、内装は安っぽいがメーター類のデザインも含め運転していて楽しい。今のトヨタは、どこかちぐはぐな感じがする。
カテゴリー : 一般 電気/電子材料
pagetop
セラミックスフィーバーのさなか、いすゞ自動車がアスカにオールセラミックスのレシプロ断熱エンジンを搭載し公道を走らせた。この様子はNHKで紹介され、フィーバーの火にますます油を注いだ(宮崎緑氏がレポーターをされた「日本の先端技術」でその姿が紹介されている(注))。
しかし、21世紀になってもこのアスカのような自動車は登場していない。一方ガスタービンをオールセラミックス化しようというプロジェクト、ムーンライト計画の参加企業だったトヨタ自動車は、ガスタービンとモーターのハイブリッド車をモーターショーで提案した。
ガスタービンというエンジンは一定の高速回転で運転したときには効率が高くなるが、回転数を変動させると極端に熱効率が悪くなる、という。それで自動車に用いるときにはモーターとハイブリッド化して、高速走行ではガスタービンを用いる、というアイデアにたどり着いたようだ。
また、エネルギー効率を考えてエンジンとモーターのハイブリッドとなっている。同じ時に日産自動車はセラミックスガスタービンだけを参考展示していた。
ガスタービンとモーターのハイブリッドエンジンは、その後レシプロエンジンとモーターのハイブリッドとしてプリウスに展開され現在至るが、日本の消費者は、このハイブリッドエンジンが、未来の電気自動車へ変遷するつなぎ技術と信じたのでハイブリッド車が普及した。また、複雑な機構によりエンジンとモーターとの切り替えやエンジンとモーターの同時使用など凝ったつくりを好む日本人には支持されやすいシステムだ。(明日に続く)
(注)ゴム会社はこの番組のビデオを昼休み中も含め、少なくとも4回社内で上映している。4回見た、と吹聴していた社員がいたから回数を覚えていた。当方は3回しか見ていないが、3回見てセラミックスアスカに感動し高分子の難燃化テーマの傍ら高純度SiCの企画を練っていた。
カテゴリー : 一般 電気/電子材料
pagetop
ノートの月間販売台数がアクアのそれをぬいたのだそうだ。しかもノートの売り上げの70%はe-Powerというガソリンエンジンを発電専用に用いた電気自動車。この現象はハイブリッド車が生まれた歴史的背景を考えると面白い。
まずエネルギー効率について説明すると、ガソリンエンジンだけで車を動かした場合と、ガソリンエンジンで発電して電気モーターを動かした場合、ガソリンエンジンで発電しそれで電池を充電しながら電池で電気モーターを駆動した場合では、この順にエネルギー効率、すなわち燃費は悪くなる。
エネルギー保存則など持ち出さなくても、ガソリンエンジンから直接駆動力を取り出したほうが燃費が良くなることは、科学に詳しい人ならば直感でわかる。また物理に詳しい人ならばすぐにモデル計算を行い、そのような結果になることを示すことができるはずだ。実際にその昔そのような議論を学会で聞いたことがある。
セラミックスブームの時にオールセラミックスガスタービンエンジンが話題になった。このエンジンを断熱状態で稼働すると熱効率が40%を超えるという。この40%というのは内燃機関の熱効率目標になっているが、未だに超えられない夢の目標なので、セラミックスブームは一気にフィーバーとなった(明日に続く)。
カテゴリー : 一般 電気/電子材料
pagetop
パーコレーションについて研究を行うときに、コンピューターは大変便利な道具である。特に最近はメモリーも安くなり、なんといってもCPUが30年近く前よりもけた違いに高速になった。はじめてコンピューターに触れたのは、大学の計算機実習だが、フォートランの簡単なプログラムを動かす作業でも一日仕事だった。
プログラミング環境もRAIDが充実し、その使用方法を習得すれば、ベッドの上で寝転がって鼻歌交じりに窓の開閉が可能で見栄えのする入力デザインの計算プログラムを作成可能である。30年前は、Cの処理系をパソコンへインストールする作業から入り、エディターをセットしなければプログラミングを始めることができなかった。
苦労してプログラミング環境を立ち上げても、見栄えのしないプログラムしか作ることができなかった。当方はもっぱら入力も出力もファイルを通じて行うプログラムを作っていた。自分専用だからこれで十分だった。また、MS-DOS環境ではパイプラインを使えたので、ファイル形式さえ統一すればデータを他のプログラムで活用でき画面入力よりも便利だった。
さてパーコレーション転移のプログラムのアルゴリズムについては、シミュレーションの応用分野が高分子半導体だったので導電性微粒子を絶縁体に分散したときに生じる現象を立方体を用いたモデルにキルヒホッフの法則を応用したものである。プログラムを作成したときにまだ同様の考え方のプログラムは報告はなされていなかった。
しかし学会で報告するために文献検索を行ったら雑誌「炭素」の二か月前の号に同様の考え方の論文が投稿されていたことがわかった。学会報告はすでに申し込んでいたので発表するかどうかを迷ったが、論文に書かれていたプログラムのアルゴリズムと少し異なる部分があったので、その論文を引用してとりあえず資料を作成し発表した。しかし論文にまとめるところまでは諦めた。
現在パーコレーション転移シミュレーションプログラムを作りながら学ぶPython入門PRセミナーの受講者を募集中です。
PRセミナーについてはこちら【無料】
本セミナーについてはこちら【有料】
カテゴリー : 一般 電気/電子材料 高分子
pagetop
酸化スズゾルとゼラチンバインダーとを複合化して透明帯電防止層を製造する技術は、特公昭35-6616に書かれている。ただし実施例には一部重要なノウハウが書かれていない。この特許が出願された時代は、ITOが盛んに研究されていた頃で、酸化スズは透明導電体材料として注目されていた。ただしその導電機構については解明されていなかった。
高純度酸化スズが絶縁体であると科学的に解明されたのは1980年代で、無機材質研究所の成果である。長い間酸化スズの導電性について科学的解明が難しかったのは高純度単結晶を製造する技術が無かったからである。
無機材質研究所では、各種金属酸化物単結晶の研究過程で高純度酸化スズ単結晶の合成に成功し、その電気特性の解明が可能となり、それが絶縁体であるとの科学的結論を導き出した。そして高純度酸化スズ単結晶は絶縁体であるという科学的に正しい真理を確定している。
フィラーの電気特性でさえこのように科学的解明が難しいのに、そのフィラーとマトリックスとの相互作用になってくると天文学的な難易度になる。すべてが解明されてから技術を開発する、などと考えていたら技術開発競争で負けてしまう。
だから、どうしても非科学的技術開発が必要となってくる。科学的情報が乏しい中で開発が進められた酸化スズゾル透明帯電防止層は、間違いなく非科学的方法の成果だった。
面白いのは、写真会社へ転職したときに酸化スズゾルでは写真フィルム用の帯電防止層を製造できない、という社内論文が書かれた直後で当方がパーコレーションのシミュレーションプログラムのアルゴリズムを完成させたときだった。このような否定証明の科学的論文が正しく書かれていたのは、パーコレーション転移という現象が関係していたにもかかわらず、混合則で考察が進められていたからである。すぐにパーコレーションをシミュレートするプログラム開発に着手した。
現在パーコレーション転移シミュレーションプログラムを作りながら学ぶPython入門セミナーの受講者を募集中です。
PRセミナーについてはこちら【無料】
本セミナーについてはこちら【有料】
カテゴリー : 一般 電気/電子材料 高分子
pagetop
複合材料のパーコレーション転移で、フィラーで形成されるクラスターを自由に制御する技術は大変高度であり、この特殊なケースは自己組織化というカテゴリーに分類されたりする。
この制御因子が、科学的に解明されているのかされていないのかはっきりしていないのが現在の状況である。だからパーコレーションの制御技術について、前回は運に左右されるようなことを書いた。
すなわち、この制御因子は、複合材料の種類や材料を製造したり賦形したりするときのプロセシングで重要ではあるにもかかわらず科学的に解明されていない、と当方は考えている。
腕のいい技術者ならば概略の制御因子を述べる(注)ことができても、それが科学的に必ず成立するとは言いがたい。だからパーコレーション転移の制御技術は、時として非科学的方法が有効であったりする。
PPS中間転写ベルトにおいて、カーボンがパーコレーション転移を起こしている島状のクラスターをパーコレーション転移が起きないように均一に分配混合を進める技術は非科学的方法で開発された。ただし神棚を作ってお祈りをしたわけではない。いわゆるKKDだ。ただしKKDといっても弊社で指導しているPPAPやその他の問題解決技法を駆使したうえでのKKDだ。ヤマカン頼りではない。
ところで、このような技術を科学的に開発できると思っている人は、科学者として優秀な方かとんでもない勘違いをしている人かどちらかだろう。優秀な方であれば、いつでもどのような材料やプロセスでも成立する具体的な理論と方法を示すことができるはずである。しかし実際にはそれができないから、特殊な材料や特殊な条件でうまく組織構造を制御できた系について自己組織化と称して研究を進めている。
(注)中間転写ベルトのPPS/6ナイロン/カーボンという処方は当方が考えたのではない。前任者の部長とその部下のマネージャーが、PPS/カーボン系においてパーコレーションの制御ができなくて、島状に相分離する6ナイロンにカーボンをくっつけたらよいのではないかという願望アイデアから考え出されたらしい。このアイデアがよかったかどうかについては批判をする気になれない。このアイデアのおかげで退職前の仕事が生まれたのだから。現代の技術にも非科学的な成り立ちの技術が存在する。iPS細胞でもとりあえず24個の遺伝子を突っ込んでみた、という試みがノーベル賞のきっかけとなったことを山中先生はインタビューで話されていた。
現在パーコレーション転移シミュレーションプログラムを作りながら学ぶPython入門セミナーの受講者を募集中です。
PRセミナーについてはこちら【無料】
本セミナーについてはこちら【有料】
カテゴリー : 一般 電気/電子材料 高分子
pagetop