ゴム会社の合成技術研究室最後のテーマである。当方の3年間に開発した世界初のホスファゼン変性ポリウレタン発泡体や燃焼時の熱でガラスを生成する難燃化技術、高純度SiCの前駆体合成につながったフェノール樹脂発泡体製造技術の体験をもとに「科学」をベースとした「技術」を中心にまとめている。
この一部は、高純度SiCの生成機構を扱った学位論文に掲載されている。また、当時の建築研究所との共同研究で公開された内容もセミナーに含まれている。高分子の難燃化研究が盛んだった1980年前後の研究を中心に構成しているが、最近の研究成果も含んでいる。
タグチメソッドによる難燃化技術開発事例は3時間コースで含まれていないので、一日コースあるいは2日間コースを問い合わせていただきたい。個人指導コースのご希望にもお答えします。また、企業へセミナーの出前も可能です。
高分子の難燃化技術について、溶融型と炭化型の2種の手法について3時間で解説する。難燃化技術の背景、特許動向等省略するが、技術の勘所について把握できるようにまとめている。
また、これまで学会等から依頼された総説をサービスとして1部電子データとして添付するので難燃化技術を手っ取り早く学びたい人には最適である。
ただし最初に書きましたようにタグチメソッド等の開発の実務で有用な考え方を一部含まないので、実務で難燃材料技術開発を担当されている方は、別途ご相談ください。1日あるいは2日間コースのご提案をさせていただきます。
2日間コースでは、質問時間を長時間とることも、あるいはプライベートなセミナーとすることも可能です。1日コースでは、特別オプションとしてサービスいたします。
カテゴリー : 一般 学会講習会情報 宣伝 電気/電子材料 高分子
pagetop
新しい試みとして、3時間WEBセミナーを6月と7月受講者の希望日に希望内容で開催いたします。これまで弊社が外部セミナー企業の依頼で講演してきました内容を下記にまとめましたので、ご希望の受講日を3候補及びセミナー内容希望をご連絡ください。受講料は1名3時間1万円を基準としますが、企業等で多数受講される場合にはご相談ください。別途お見積りをさせていただきます。また、WEBセミナー以外に対面セミナーも可能ですが、別途出張に伴う交通費が必要です。
1.実務全般
(1)ドラッカーベースの問題解決法
ヒューリスティックな解決、アイデア創出法なども含まれます。希望内容に合わせ講演内容を構成可能です。
(2)コーチングによる問題解決
(3)統計手法、重回帰分析、主成分分析
(4)環境問題の動向
2.技術開発
(1)データサイエンス
タグチメソッドから多変量解析、データ駆動の実験法まで、事例による手法の紹介。
タグチメソッドに関しては、習得を目標とした複数回の講義や実例をベースにしたご指導も可能です。
(2)高分子の難燃化技術
(3)高分子のプロセシング技術
混練技術を中心に講義内容を構成します。
(4)高分子材料の耐久性、劣化寿命予測等
(5)信頼性工学
(6)界面活性剤の科学
(7)セラミックスのプロセシング技術
(8)高分子からセラミックスまで熱膨張
(9)高分子からセラミックスまで熱伝導率
(10)高分子からセラミックスまで熱重量分析
(11)高分子材料のブリードアウト現象
(12)シリコーンの科学と技術シリコーンゴムの入門から応用まで
(13)フィラーの表面処理
(14)パーコレーションの科学
(15)高分子材料の帯電防止技術
(16)フィルム成膜技術とその表面処理技術
以上
カテゴリー : 一般 学会講習会情報 電気/電子材料 高分子
pagetop
コロイド水溶液に含まれる粒子表面には電荷が存在し、電荷二重層が形成されている。その電位はゼータ電位として知られ、計測されている。
ゆえにこのゼータ電位のバランスを崩すような物質をコロイド水溶液に添加すると粒子が凝集して沈殿してくる。この性質は安定したコロイドを必要とする産業には迷惑な現象を引き起こすが、浄水場の沈殿槽のような分野では重宝する。
これは現象に潜む機能を活用したいのかどうかに左右される事例である。ジョーパスのギター演奏に見られるテンションや代理コードの使い方は、この事例とは雰囲気が異なる。
美しい響きを頼りに和音を組み立てていったバッハに対して、ジョーパスはメロディーラインの中にフィットする音を頼りに和音を組み立てている。必ずしもバッハが好む和音とはなっていなくても汚い響きとはなっていない拡張された和音を使っている、と言う表現になるかもしれない。
このような表現に相当するような視点でコロイド粒子を眺めると、必ずしも電荷二重層の安定性だけにとらわれる必要が無いことに気がつく。
ジョーパスと同様に電荷二重層のバランスを安定に保つ視点ではなく現象の変化(流れ)に着目し、うまく安定に変化するような状態を創り出す視点もあるのだ。
すなわち電荷二重層の電位が多少乱れても状態の遷移過程で粒子を沈降させない現象が起きれば、コロイドの相の反転手法を開発できる。例えば粒子表面の吸着現象に着目した手法は、ジョーパスの代理コードに匹敵するパラダイムだ。
この現象に着目すると、W/O型のコロイドをO/W型のコロイドへ安定に反転させることができる。科学の常識からはありえないことであるが、ここでは電荷二重層で説明されるコロイドと異なる世界で起きる現象の機能を使用している。
現在この技術の特許審査請求中であるが、詳細は弊社へお問い合わせください。ギターをうまく弾くことはできないが、ジョーパスの視点で現象を眺め、新しい技術を生み出すことはジョーパス並みにできます。
カテゴリー : 一般 電気/電子材料
pagetop
1975年に東北大矢島教授により、ジメチルポリシロキサンによるSiC繊維の発明がなされている。そしてこれがパイロットプラントで試作されたのが1978年である。
その3年後の1981年にゴム会社で、フェノール樹脂とポリエチルシリケートとをリアクティブブレンドで均一なポリマーアロイとする技術(高純度SiCの前駆体技術)が開発されている。
この技術を実用化するために、当時セラミックスフィーバーを背景にゴム会社の研究所で高純度SiC事業化企画を提案したがボツとなった。
その後故服部社長がゴム会社のCIを進めるにあたり、「電池とメカトロニクス、ファインセラミックス」を3本の柱とする多角化戦略を発表され、50周年記念論文の募集があった。
この記念論文に高分子技術でファインセラミックス事業に進出するシナリオ(注)で応募したが佳作にも入らなかった。しかし、これがきっかけとなり、1983年4月に無機材質研究所へ留学している。
この年に昇進試験があり、「推進したい新事業についてA4用紙にまとめよ」という問題に、「高純度SiCの半導体治工具とウェハー事業」を解答として提出し落ちている。
しかし、この昇進試験に落ちた知らせが、1983年10月1日に無機材質研究所所長室にかかってきて、T所長の許可を得たI総合研究官から「1週間だけ自由に実験できる許可を与えるので、試験答案に書いた内容を実現してみなさい」とありがたい言葉を頂いた。
すでに前駆体技術を開発していたので、この時から4日後に高純度SiCの製造プロセスの元になる研究データを揃えることができた。初めての実験では真黄色のSiC粉体が得られ、無機材質研究所でちょっとした騒動になっている。
その後、この時合成された高純度SiCの粉体技術について服部社長から2億4千万円の先行投資とセラミックス研究所の建設が決定され、30年間ゴム会社で事業が続くことになる。
先日SP値に関するセミナーがあった。フェノール樹脂とポリエチルシリケートはSP値が大きく異なるがリアクティブブレンドにより、それを均一にブレンドすることができる。この体験談を解説した。当方の学位論文にもなっている技術であるが、その内容を講義するとなぜか気分が若返る。
ゴム会社で何度も却下された企画が事業として30年続き、今は愛知県にある(株)MARUWAで事業継承されている。
若い人に伝えたい。パワハラはじめ企業内環境は40年以上前に比べれば比較にならないぐらいよくなっている。他人のFDを壊して仕事を妨害したり陰湿ないじめなど少なくなった。
たとえ上司に否定されても事業の大きな夢があるならばそれを持ち続けてチャンスが生まれるまで我慢する胆力と日々の学びを行い強みを磨けば必ず夢を実現できる(夢を実現できてもひどい目に会うかもしれないが、夢を実現できた成功体験とそれにより広がる視界は、本当に努力しないと得られない。)。
本来のあるべき姿は、無機材質研究所で出会ったような人々が上司や同僚である組織だが、バブル崩壊後停滞した日本企業から噴き出した様々な問題や、昨今の各種ハラスメントを排除しようという社会動向から問題のある企業がまだ多いのだろう。
(注)SiCが半導体物質であることが研究段階だった時代で、高純度SiCを低価格で量産できる事業が大きなニーズとなっていた時代である。レーリー法でアチソン法によるSiCを高純度化する手法が知られていたが、何度も繰り返す必要があった。当方の考案した前駆体法は単位操作一回で高純度化できた。当時オール電化がブームとなっており、電気自動車やエンジンで発電しモーターで走るハイブリッド車が話題になっていた。ハイブリッド車についてはエネルギー保存則から、日産のePower方式では実用性が無いとされた時代である。そこでトヨタプリウスが「20世紀に間に合いました」と登場している。インバーターとして用いるパワー半導体のニーズが急激に高まった。Siウェファーでは冷却技術にコストがかかったので現在のSiCウェハーの低価格化が期待されていた。シナリオではエンジニアリングセラミックスとして半導体治工具事業を行い、ウェハー開発を行う壮大な話を展開しており、現実的ではないという理由で評価されなかったのだろう。バイオテクノロジーによる豚と牛の賭け合わせで作った量産性があり旨い肉やそれを食べながらマリンスポーツを行う論文が1席に選ばれている。セラミックスフィーバーと同時にバイオテクノロジーも注目が集まり始めた時代で、10年後には第一次藻類ブームが起きている。
カテゴリー : 一般 電気/電子材料 高分子
pagetop
SiCの引張強度あるいは曲強度は、成形体(焼結体)製造のために用いた粉末の結晶系により左右される。ただし、成形体密度が99%前後の成形体密度のときであるが。
また成形体製造温度が2000℃以上であると3CのSiC(βSiC)は6Hへ転移するためにその差も分からなくなる。1960-2000℃の温度で制御した場合に原料粉末の結晶系の差が見られる。
成形体製造に高度な技術が要求されるが、注意深く制御しながら成形体を製造すると、3Cの結晶系の原料を用いた場合に6Hの結晶系の原料を用いた場合よりも強度は1-2割ほど向上する。
この原因は、3C結晶系が熱膨張に関し等方的であるのに対し、6H結晶系が異方性であるためだ。これは40年以上前に科学的に確認され、当方の学位論文に6H結晶系の異方性について実験データとともに考察している。
高分子材料も含め、材料強度評価は、成形体製造技術や評価技術の影響も受けるので、原材料の影響だけを正しく評価することが難しい。しかし、すべての材料物性は原材料製造プロセスから成形体製造プロセスまですべての履歴の影響を受ける、ということを知っておくことは重要である。
高分子材料については製造プロセスの履歴の影響が良く知られているが、セラミックスや金属では、高分子よりもその影響が小さくなるので話題にならない時もある。
カテゴリー : 一般 電気/電子材料
pagetop
高分子の成形体を製造するにあたり、高分子には何らかの添加剤が混合される、と以前この欄で書いている。その時、重要となるのは混練技術である、と説明している。
混練技術とは、混ぜることと練ることの両方で高分子を変性し機能を向上する技術なのだが、その説明が難しい。難しい理由は、形式知よりも経験知の占める割合が大きいからだ。
この経験知が占める割合が大きい、ということさえ、理解していない技術者も多いので困る。原因は適当な混練機で一応コンパウンドができてしまうからである。
高機能を要求しなければ、そのように製造された適当なコンパウンドでも成形体を製造可能なので、混練技術をあまく適当に捉えることになる。
謙虚に現象を眺めれば、高機能を要求されないコンパウンドでも、十分な混練ができていないことを物性の計測から知ることができるのだが、物事を甘く考える技術者には成形体物性の評価もいい加減である。
カテゴリー : 一般 電気/電子材料 高分子
pagetop
ワイブル統計は、最弱リングモデルで導かれている。最弱リングモデルとは、製品品質の最も壊れやすいところで品質劣化が起きれば、製品の機能の寿命であるという考え方だ。
大変わかりやすいモデルで、製品の故障解析手法として普及している。また、このモデルの統計的扱いと式の導出方法は、高校の数学の知識があれば理解できるので、統計手法として易しい部類である。
ただ、セミナーを通じて感じることは、品質管理部門に比較して研究開発部門で普及していない不思議さである。そこで、弊社はこのホームページにワイブル統計のプログラムを無料公開して普及に努めている。
製品品質のデータ処理だけでなく、引張強度データについても処理を行うと、強度データのばらつき構造を整理できる。
例えば高分子材料の引張強度は、弾性率と靭性が影響するが、それ以外にサンプルの取り扱いプロセスも大きく影響する。
ワイブル統計でデータ処理を行い、傾きの大きな1本のグラフが得られれば良いが、複合型のグラフが得られたならば、弊社へご相談ください。
カテゴリー : 一般 電気/電子材料 高分子
pagetop
成形体の均一性にペレットの均一性が影響を及ぼすことが意外と知られていない。高分子の混練技術の目的に成形体の均一性を実現できるコンパウンドの提供という項目があることをご存知ないコンパウンドメーカーも存在する。
これは絶縁体である高分子にカーボンなどの導電体をブレンドし半導体シートあるいは半導体ベルトを製造して平面の表面比抵抗を数点計測して確認できる。
コンパウンド段階で電気特性が均一であると、押出成形あるいはインフレーション成形を行ったときにシートなりベルトの面内の電気特性が均一となる場合が多い。
ここで、コンパウンドの電気特性が均一ならば確実に成形体で均一になるとは限らないことに注意する必要がある。パーコレーション転移という現象が起きるためだ。
すなわち、コンパウンドの電気特性を均一にしただけでは不十分で、パーコレーションが安定化されていることも要求される。
パーコレーション転移については後日説明するが、混練技術の重要性を示す現象の一つが半導体高分子の成形プロセスで起きる。半導体シートや半導体ベルトを製造するときに、コンパウンドの電気特性が不均一であると電気特性を均一化できないことを知っておいてほしい。
ただし、コンパウンドの電気特性についてどこまで均一性とパーコレーションの安定性を実現すべきかは、求められる成形体の電気特性により変化する。
コンパウンド段階で10%程度のばらつきがあっても成形体で5%程度のばらつきに抑えることも可能である。このあたりはコンパウンドの配合設計にも依存する難しい問題である。ただ、成形体の均一性に混練技術が影響することを知っておいてほしい。
カテゴリー : 一般 連載 電気/電子材料 高分子
pagetop
ゴム会社の研究所においても混練に対する考え方が異なっていた。ゴムのコンパウンディングを現場においてバンバリーとロールで行う以上、研究開発段階もそのプロセスで行うべき、という考え方は少数派だった。
研究開発段階は、簡便なニーダーでコンパウンディングを行っても問題なし、という見解が主流だった。科学的にもっともらしく聞こえる蘊蓄をこねる研究者もいたが、当方は高分子のプロセス依存性が大きいことを考慮すると、簡便なニーダー使用に賛成しかねた。
ゴム屋の中でも50年近く前このような状況だった。50年近く前に二軸混練機の高性能化の技術開発が始まっているが、未だに高性能ゴムを製造したいならばバンバリーとロール混練のレベルまで二軸混練機1発でコンパウンディングは不可能である。
二軸混練機に、当方のカオス混合機をつけただけでもコンパウンドの性能は向上するが、バンバリーとロール混練のレベルまで上がっている自信は無い。
さて未だにバッチプロセスと連続プロセスでは、コンパウンディングにその性能差が存在するが、射出成型の用途では高いコンパウンディング性能が要求されないので、高性能化された二軸混練機で十分な混練ができると信じている樹脂屋は多い。
20年近く前に、半導体無端ベルトの押出成形技術の開発を担当した時に、前任者から国内トップメーカーのコンパウンドだから完成度は高い、と言われた。しかし、そのコンパウンドを用いて半導体無端ベルトの押出成形を行うとパーコレーション転移によるばらつきが発生し、歩留まりが10%前後となった。
この原因について、コンパウンドメーカーの技術者は、押出成形技術が未熟なためと説明してきた。さらに、コンパウンドは十分に分散混合されて技術として完成している、と主張していた。
カテゴリー : 一般 電気/電子材料 高分子
pagetop
高分子材料の寿命予測にアーレニウスプロットや時間温度換算則は大切な知識だが、これらが経験知であることを知っておくことは重要である。
アーレニウスプロットは反応速度論で利用されているので形式知と勘違いされている人がいるが、寿命予測に用いるときには、経験知と捉えた方が良い。
科学の問題についてトランスサイエンスという言葉が50年近く前に物理学者の言葉として生まれている。福島原発の問題が起きたときに、日本でこの言葉が一時注目された。
「科学に問うことはできるが、科学で答えることができない問題」という意味だが、高分子材料の寿命予測は、まさにトランスサイエンスと呼んでよい問題だ。
このような考え方に対して異を唱える人がいるので、ここではこれ以上書かないが、有料のセミナーでは、時間温度換算則の問題も含め説明している。
しかし、一度痛い目にあうと高分子材料の寿命予測に関して慎重になる。例えば「最高の品質で社会に貢献」という社是のゴム会社に入社した時に、「科学でタイヤはできない。技術でタイヤを造る」とCTOに教えられた。
写真会社で単身赴任するや否や、まさにこのCTOの教えを活かす出来事に遭遇したので迷うことなく火消を行っている。
カテゴリー : 一般 電気/電子材料 高分子
pagetop