活動報告

新着記事

カテゴリー

キーワード検索

2015.09/18 SiCのホットプレス焼結(3)

常圧焼結よりもホットプレス焼結が容易な理由は、焼結反応時にかかっている圧力に違いがあり、ホットプレス焼結では、その圧力で異常粒成長が抑制されるため、と言われている。
 
高純度SiCの事業化で苦戦しているときに、切削工具の企画を立案せよと指示が出た。この時の企画は「まずモノを持って来い」企画である。SiCは鉄と反応するので切削工具は難しいと言われていた。しかし、そんなことは言っておれない。
 
一発勝負でSi-Ti-B-Al-C系の組成で切削チップを開発することにした。当時クラチメソッドという怪しい方法を開発していたのでその方法を用いた。この方法はタグチメソッドと似ており、ラテン方格を用いる。但し外側因子には相関係数を割り当てる。切削チップなので、硬度測定における荷重と特殊な圧痕サイズから求めた相関係数を用いた。
 
実験計画法と同様の方法で相関係数が最小になる、すなわち圧痕がつきにくい材料組成を求めたところ、複合組成にもかかわらずSiC並の硬度の組成を見いだすことができた。驚くべきことに硬度はSiC並だが、靱性は部分安定化ジルコニアに近かった。
 
この開発で驚いたもう一つあり、それはホットプレス焼結における挙動だ。収縮カーブのモニタリングデータから、この組成において液相ができる領域があり、それを活用すると低温度で焼結できることも発見した。
 
その他にも興味深い現象が観察されたが、まずモノを作る必要から、最良組成の試料で、実際に切削チップを作って鋳鉄を削ってみた。切削チップは和井田製作所のご協力を得て製造し、鋳鉄の研削は赤羽の工業試験所で指導してもらい実験を行った。
 
結果は大成功でSiCで鋳鉄の切削ができ、工業試験所の先生もびっくりされていた。早速企画にまとめ研究テーマとして半年遂行したが、マーケッターの報告から、今回得られた組成を中心とした事業ではマーケット規模が小さいことがわかり開発中断を申し出た。
 
住友金属工業と半導体治工具のJVを立ち上げるまで、このような事業企画は数多く検討されたが、技術的な理由ではなく、マーケット規模ですべてアウトになっていた。半導体治工具の事業も一度つぶれた企画である。しかし、住友金属工業が当時としてはそれなりのマーケットを持っていたので、会社からJVの許可が下り20年以上経過した現在まで事業として続いている。

カテゴリー : 一般 連載 電気/電子材料

pagetop

2015.09/17 SiCのホットプレス焼結(2)

なぜSiCの常圧焼結においてβSiC>αSiC>高純度SiCの順にホウ素の添加量を少なくできるのか。理由は簡単で、SiC粉体の一個の粒子内部に含まれる不純物酸素の量がこの順に少なくなっているからだ。例えばβSiCでは0.7%以上の内部酸素が不純物として含まれているが、αSiCは0.5%前後であり、高純度SiCでは実験誤差程度である。
 
この粒子内部に含まれる不純物酸素の量に違いが生じるのは、粉体の製造プロセスが異なるためである。すなわち高純度SiCでは、理論上不純物の内部酸素は含まれない。αSiCもSiCインゴットを粉砕して製造するので、理論上含まれないはずであるが、インゴットの内部に不純物として含まれてくるとこれをそのまま引き継ぐことになる。
 
βSiC粉体だけ多量に内部不純物を抱き込むことになる。昔市販のβSiCの内部酸素を計測したところ、最大で1.5%も不純物酸素を含んでいる粉体が存在した。
 
SiC内部に不純物酸素が含まれると、1500℃以上でその酸素が助剤のホウ素と反応し、ホウ酸ガスとして系外に排出されてしまう。ゆえにホウ素をプロチャスカは多めに入れる必要があったが、高純度SiCでは0.1%以下でも焼結できた。
 
常圧焼結では微量でもホウ素を添加する必要があったが、ホットプレスではカーボンだけでも良かった。面白いことにカーボンだけを助剤にして用いたときの成形体の密度はβSiC<αSiC<高純度SiCとなった。高純度SiCでは、3以上の密度が安定して得られた。
 

カテゴリー : 一般 電気/電子材料

pagetop

2015.09/16 SiCのホットプレス焼結(1)

お茶わんなどの材料をセラミックスといい、セラミックスで成形体を製造するためにはセラミックス粉体を焼き固める必要がある。粉体をあらかじめ成形し、それを常圧で焼き固めるプロセスを常圧焼結法と呼ぶ。筒の中に粉を詰めて上下から圧力をかけながら焼き固める方法をホットプレス焼結法と呼ぶ。SiCでは、カーボン製の筒とカーボン製のシリンダーを用いる。
 
かつてSiCの常圧焼結は難しい、と言われ、様々な焼結助剤の探索が行われた。1970年代にプロチャスカにより発見された、ホウ素とカーボンの組み合わせによる常圧焼結技術は画期的な発明だった。
 
ところが、彼の特許クレームでは、ホウ素の添加量とカーボンの添加量がクレームとされ、その後この特許を見て同じ組成で添加量を変えた他の人によるαSiCの常圧焼結技術の特許も成立している。恥ずかしながら当方の開発した高純度SiCでもホウ素とカーボンを究極まで少なくした技術として特許が成立した。
 
プロチャスカが特許クレームに添加量まで入れなければいけなかったのは、周期律表の主立った元素についてホットプレス焼結を用いてSiCの焼結挙動が調べられていたからだ。すなわち、ホウ素だけ、あるいはカーボンだけを用いて常圧焼結は難しかったが、ホットプレス成形では、100%の緻密化は難しくとも90%以上の緻密化を実現した論文が存在した。
 
特許では新規性と進歩性が求められるので、ホウ素とカーボンを組み合わせた技術では特許化が難しいと判断したのかもしれない。しかし、常圧焼結技術は誰も成功していなかったので、本来は添加量など関係なく、元素の組み合わせだけでも特許として成立したはずである。
 
おそらくプロチャスカの勘違いあるいはまじめさが他者の特許成立を許したのかもしれない。当時面白いと感じたのは、αSiCに限定した特許を出願しようとした発想である。技術者として駆け出しだったので、この根性は勉強になった。勉強になったので、ちゃっかりと高純度SiCをクレームとしてホウ素とカーボンの組み合わせで添加量が最小の領域をクレームとして特許出願をさせていただいた。
 
この特許出願の裏話をすると、実は高純度SiCとカーボンだけでも常圧焼結に成功していた。しかし、緻密化に再現性が無く、やはりカーボンだけでは無理だろうと言うことになって、少量のホウ素を添加した領域で実験をすすめ、4回に3回程度成功することができた。
 
STAP細胞は一度も成功しなかったが、無機材質研究所では一度の成功でも謙虚に繰り返し再現性を評価して、一度しかできなかった条件をあきらめたのだ。ホットプレス焼結ではカーボンだけでも再現性よく緻密化していたので、特許のクレームにカーボンだけでも常圧焼結可能と、当方は記載したかった。
  

カテゴリー : 一般 電気/電子材料

pagetop

2015.08/13 未だ科学は発展途上(23)

中間転写ベルトのコンパウンドは、子会社の敷地を間借りして建設されたプラントで現在も生産が続けられている(現在はリスク管理の観点から国内2ケ所で生産を行っている)。科学では説明できない6ナイロンとPPSが相溶したコンパウンドが、技術で組み立てられた生産体制で品質が安定に維持(注)され、後工程の押出成形で高品質のベルト生産を可能としている。
 
科学の知の体系では、二相に相分離すべき系である。当初の材料設計では、この考え方に沿って開発が進められた。しかし、技術として完成できなかっただけでなく、分析を科学的に進めてもその原因を解明できなかった。
 
科学的に解決困難に見えたのだが、電気粘性流体の増粘の問題や酸化スズゾル薄膜の導電性問題のように、ウェルド部分では必ずこのような現象が生じるため、この技術を完成させることは不可能だという論法で前任者は否定証明を行わず、技術を完成させる意志決定をして当方に相談に来た。科学的手順でゆきづまったらヒューマンプロセスに頼る賢明さが大切である。
 
ところで、科学の知の体系では高分子のプロセシングの効果に関する情報が不足している。理由は、多くの高分子材料が非平衡で進行するプロセシングにより生産されているからである。これは科学的な解明が難しく、今でも研究が行われているテーマである。しかし技術では技術者の想像力により、異分野で行われている類似のプロセシングを応用することができる。そして異分野で成功した事例で起きている変化を活用し新たな材料を作り出すことができる(アナロジーの活用はヒューマンプロセスの一つ)。
 
技術者の知の体系では、アナロジーは重要な手段で、科学の知の体系では想像のつかない技術を生み出す原動力になっている。科学で未解明の現象でも、アナロジーにより機能を絞り出し、技術の実体として実現できる。
 
科学以外を排除するマネジメントでは、このような技術を生み出す土壌は育たない。TRIZやUSITなどのツールを用いて技術を科学で支配し、開発を論理的に進めることは科学の勉強になるかもしれない。しかし、実践知や暗黙知を軽蔑する風土では、形式知を超える技術を生み出すことが難しくなる。
 
6ナイロンとPPSが相溶し、しなやかなベルトを生み出すコンパウンドに科学的な解説を与えることは難しいが、カオス混合という技術について実践知と暗黙知がどのように生かされたのか説明することはできる。昨年高分子学会から招待されて、すでに公開された資料とその後の研究成果を基に1時間の講演を行っった。また、暑くて眠れない夜には、フローリー・ハギンズ理論の見直しを行い、睡眠不足解消に役立っている。
 
(注)ベルトの電気特性をコンパウンド段階でチェックしている。その結果、工場出荷されたコンパウンドでエラーが一度も起きていないという。弊社の研究開発必勝法を用いて短期間にプラント立ち上げから品質管理体制まで当方含め3人で行った。高純度SiCのプラントと同様に小平製作所に助けていただいた。

カテゴリー : 一般 連載 電気/電子材料 高分子

pagetop

2015.08/12 未だ科学は発展途上(22)

部下のマネージャーが成功したサンプルを見て、成功はしたけれど製品には載せられないですね、としたり顔で言い始めた。何故だ、と尋ねたら、デザインレビュー(DR)をやっていないから、というのがその答えだった(注)。
 
ここに至るまでの彼の姿勢から不誠実極まりない回答と感じたが、まさかできるとは思わなかったからすぐにやってみることに賛成した、と言うのである。すなわち失敗すればアイデアを諦めてグループリーダーの役目に戻る、と思った、といい、本心はグループのマネジメントを心配しての対応だったようだ。
 
正直なマネージャーである。不誠実と思ったが、彼は彼なりに20名近くのグループの運営を心配していたのである。君がグループリーダーをやれ、といったら彼は、それはむちゃな回答です、人事上ありえない、という。それにDRはステージゲート法に似ていて、各段階を踏んでステップアップしなければいけないので5ケ月ですべてのゲートを通過することは難しい、と教えてくれた。
 

一か月に3回ゲートを通過すれば、2ケ月後には、今検討している材料と同じファイナルステージになる、と言ったら、健康に気をつけてどうぞご自由に、となった。
 
DRの資料作りは徹夜すれば可能なので、一人で進められるが、問題は実験データである。部下のマネージャーは極めて堅物なので捏造でもしたら、その時点で新提案のプロジェクトは終了となってしまう。
 
新薬の開発などでデータを捏造をしたりするのは、おそらく薬が完成すればそれでもう商品ができた、という技術者の思い上がりが原因だろう。薬は人体への副作用なども明らかになって初めて完成する商品である。だから臨床データの捏造は許されない。
 
今回の中間転写ベルトについて、ベルトの押出成形機でコンパウンドを製造する、というプロセスは、その繰り返し再現性も確認していた。また、そのコンパウンドを用いて製造されたベルトを旧製品に取り付け絵出しを行い、PIベルトよりも美しい絵が出ることを確認できていた。
 
問題なのはコンパウンドの量産機が無い点である。ファイナルステージの手前のDRだけで許してもらえないのか、とマネージャーに相談したら、そんな馬鹿なことを言ったら品証部に叱られる、と悲鳴にも聞こえかねない回答が返ってきた。下手な回答をしたら、社内の調整を始めかねない困った上司に見えたのかもしれない。
 
DRのようなゲートを用いた管理はステージゲート法が有名で20年ほど前から日本でも普及していたが、当方は各社の実施状況を高分子同友会の開発部会など企業人の勉強会で話を聞き、この方法に疑問を感じていた。
 
すなわち開発スピードが要求される時代にウオーターフローのような開発の進め方をして良いのかという問題である。ゴム会社ではもっと気の利いた開発方法を行っていたが、そのおかげで高純度SiCの事業は立ち上がり、30年たった今でも事業が継続している。
 
今回の場合、ゴム会社であれば、すぐにやれ、という判断をトップが簡単に出してくれただろう。そしてトップは品質保証部に品質保証体制の構築の指示を出したと思われる。高純度SiCの事業立ち上げはそうだった。品質保証体制はすべて品質保証部が整えてくださった。しかし、今回は、仕様書も含め品質保証体制つくりも自分たちで行わなければいけない。それも5ケ月未満でプラント立ち上げとコンパウンドの品質検査方法も開発しなければいけない!コンパウンド技術の基盤もない会社でできるのか?
 
(注)今日の話は、苦労の状況をお伝えするために一部フィクションを書いている。実際には部下のマネージャーは二人いた。一人は極めてまじめで、仕事を誠実にこなすマネージャーだった。彼にマネージメントの仕事を託すことができたので、当方はコンパウンドのプラント建設に集中でき、感謝している。ただ最も大きな障害となったのは、DRを通過させる作業だった。このあたりは、書けない話もある。しかし、新製品の発売タイミングに支障をきたすことなく無事コンパウンド工場を立ち上げることができたので、終わりよければすべてよし、と気持ちよく退職するはずだった。しかし、この仕事以外に新たな仕事をすることになり、退職が一年延びて、最終日2011年3月11日は記憶に残る日となった。

カテゴリー : 一般 連載 電気/電子材料 高分子

pagetop

2015.08/11 未だ科学は発展途上(21)

技術の知恵の構造体が明確になっていると、アイデアを具体化しやすいばかりでなく、その実体を作り出す方法も見えてくる。もしその機能を創りだすために代用できる道具が身近にあるならば、それを活用して実体を作り出せばよい。この時その道具の本来備えている機能と全く異なる場合もあるが、代用できれば何でも良い。
 
新しい非科学的アイデアであるPPSと6ナイロンを相溶させるカオス混合で必要な機能は、急速に引き延ばし、すばやく折りたたむプロセスである。また6ナイロンをPPSに相溶後それを急冷しなければ相分離が始まる可能性がある(注1)ので、混練後急冷するプロセスが必要になる。
 
詳細な説明は省略するが、身近にあったベルト押出成形機がそれらの機能を備えていた(注2)。不完全な部分は「急速に」という点だけだった。実験用の押出機にはトルクと回転速度の大きなモーターが運良くついていたので、外部のコンパウンドメーカーの製造したペレットを押出機の能力限界を超えた速度で押し出してみた。サイジングダイには水を流し、押し出されたクチャクチャのベルトをそれで急冷した。
 
10kgほど強引に押出し、粉砕器でそれらを粉砕した。電子顕微鏡写真を見てびっくりした。6ナイロンの島は狙い通り無くなり、カーボンのソフト凝集体がうまくできていたのである。
 
一応その高次構造ができることを期待した実験ではあるが、あまりにも期待通りの高次構造が一発でできたので、そのような場合には、心の準備ができていてもやはり驚く。これは、30歳の時に無機材質研究所で初めて高純度SiCを合成できた時と同様の感動した驚きである。いくつになってもこのような感動は心地よい興奮を伴い天に上るような不思議な気持ちとなる。ましてや今回は30年近く温めてきたアイデアである。そのアイデアを試すチャンスが不運の処遇で訪れただけでなくその実現にも成功したのである。
 
理想通りのコンパウンドができたので、翌日それでベルトを成形してみた。周方向の電気特性を測定し、こんどは思わず涙が出てきた。PI製ベルトよりも精度の良い抵抗安定性だったからだ。6ナイロンがPPSに相溶していたので、脆さはMIT値でPPS単体の50倍以上となった。品質特性をすべて満たしPIよりも電気特性が優れたベルトを簡単に作ることができたと同時にカオス混合の条件と得られる機能も確認することができた。
 
(注1)科学的可能性なので対策は必須である。この技術を創りだしてわかったことだが、PPSと6ナイロンのスピノーダル分解速度は遅く、また流動状態ではこれが極めて遅いこともわかった。これは技術を創り上げる上において幸運な現象だった。このように技術を作ってみて初めてわかる科学もある。iPS細胞もそのような幸運があったので成功している。
(注2)どのような押出成形機でもこの機能を備えているわけではない。この時の金型形状は現場で5年間改良されてきた特殊な形状だった。驚くべきことは、その改良点には科学的意味があり、マトリックスが単一成分の時に発生した問題は、ウェルドも含め不完全ではあるが改善されていた。この部分は科学と技術の違いや科学的に解明されていない世界で科学的に問題解決した時に生じる問題を論じるには適した例であるが、そこには偶然様々な技術が生まれていたので、ここでその詳細を公開できない。ちなみにPPSだけの場合にこの金型で押出成形を行うと歩留まり30%程度で低価格プリンターにかろうじて使用できるレベルとなる。

カテゴリー : 一般 連載 電気/電子材料 高分子

pagetop

2015.08/10 未だ科学は発展途上(20)

バンバリーと技を用いて混練したコンパウンドを用いて、力学物性は脆くて使い物にならないが、電気特性は良好な中間転写ベルトを作ることができた。樹脂の混練については一流のコンパウンドメーカーの研究者から見れば素人だが、バンバリーを用いた高分子の混練については30年近く前に獲得した技術があった。技で製造したベルトの高次構造は6ナイロン相の島がPPSに分散し、その島の中にだけ導電性のカーボンが分散している。
 
もしこのベルトの高次構造において、6ナイロン相がPPSに相溶したならば、カーボンの凝集は拘束が無くなり、ソフト凝集体になるだろうと想像した。相談者も含め周囲はその考えに納得し、6ナイロンがPPSに相溶し、カーボンがソフト凝集して分散した高次構造のベルトを開発目標にしようと言うことがすぐに決まった。(この結果豊川へ単身赴任し、相談者から業務を引き継ぐことになった)
 
科学的には否定されるアイデアであるが、目の前に実体があり、6ナイロンを相溶させる技術的アイデアも用意していたので、社内の合意を得るのは簡単だった。
 
しかし、外部のコンパウンダーの説得には苦労した。挙げ句の果ては新しくコンビを組むことになった部下のマネージャーからアイデアが極めて危険な賭ではないか、と科学的に正しい指摘をされ苦しい立場になった。技術としては実現可能性が高い方法だと説明しても納得してもらえなかった。
 
結局部下のマネージャーは従来通り外部のコンパウンドメーカーからコンパウンドを購入し科学的に開発を進めて、当方が混練プラントを立ち上げることでその場は納得してもらった。驚いたのは外部のコンパウンドメーカーも了解したことだった。
 
あとが大変だった。危険な賭という噂が広まる前に、技術の知恵を完璧な実体として示す必要があった。しかし、新アイデアに用いるカオス混合機は、その時この世に存在しなかった。
 
この状態でどうするのか、弊社の問題解決法を用いて考えた。すぐに答えが出てそれを実行に移したところ、6ナイロンが相溶したPPSにソフト凝集したカーボンが均一に分散した理想通りのベルトを製造できた。知の全てを動員する点に特徴がある弊社の問題解決法は、巷の科学的問題解決法よりも強力である。

カテゴリー : 一般 連載 電気/電子材料 高分子

pagetop

2015.08/09 未だ科学は発展途上(19)

中間転写ベルトのコンパウンドは、その道の一流メーカーで二軸混練機によりコンパウンディングされていた。また、コンパウンディング条件も設計者の希望を満たすように設定して行っている、と語っていた。
 
そこで、6ナイロン相にカーボンがすべて取り込まれてPPSに分散しているコンパウンドを製造してくれないか依頼した。回答はすぐに来た。「そんな物は二軸混練機でできない」という。考えていることが当たれば面白い材料となるが実用性の無い材料であることが分かっていたので、しぶしぶゴム会社で獲得した実践知を活用して、某社から借りたバンバリー(注)で目標とするコンパウンドを製造した。
 
そのコンパウンドで押出成形を行いベルトを製造したところ、周方向の抵抗偏差が0.5桁以下という、電気特性についてはスペックを満たしたベルトを製造することができた。但し、6ナイロン相にカーボンが分散しているため、その相の弾性率が高くなった。
 
一般に、樹脂へ大きな硬い粒を分散すると脆くなることが知られている。もともと脆いPPSへそのような硬い相が分散したので紙のような脆い材料になってしまい、これでは電子写真の中間転写ベルトとして使えない。
 
電気的品質特性を満たすが力学的品質特性を満たさないベルトができた。これは技術の知の形態から想定内の実体であった。このベルトは商品として使い道が無かったが、中間転写ベルト開発の方針変更のためには大切なベルトだった。
 
このベルトについて、相談者と同様に電子顕微鏡写真を揃え、解析した。コンパウンド段階でカーボン粒子はすべて6ナイロン相に取り込まれていたので、導電相は6ナイロンの島の数だけ数えれば良かった。解析の結果、周方向のどこをみても6ナイロン相の島の数はすべて等しかった。すなわち、ウェルド部分が他の部分と同一高次構造になれば、ウェルド部分の抵抗も他の部分と等しくなるのである。
 
(注)ゴムのコンパウンドは、バンバリーとロール混練で製造されているが、樹脂のコンパウンドはその技術が誕生以来一軸あるいは二軸押出機が進化した連続式混練機(多くは二軸混練機)で混練されてきた。最近低コストのゴムは二軸混練機でも製造されるようになってきたが、樹脂をバンバリーやロールで混練することは通常行われない。後日解説するがこれは樹脂の混練技術について考える時に落とし穴のようなものである。バンバリーやロール混練技術はおよそ二世紀の歴史があるが、連続式混練機の歴史はその半分もない。最近トリッキーな二軸混練機の使用方法によるフィラーのナノ分散技術やポリマーアロイの権威故ウトラッキーによるEMFがようやく登場してきた。そして10年近く前に二軸混練機による当方のカオス混合技術(第一世代)が登場したのである。今この技術について第三世代の開発を行っている。

カテゴリー : 一般 連載 電気/電子材料 高分子

pagetop

2015.08/08 未だ科学は発展途上(18)

(昨日からの続き)相談者は、科学的に推論してペレットの材料設計を行い、そのペレットを用いてベルトの押出成形を行ったところ、科学的な材料の分析結果では期待通りの中間転写ベルトができていたが、品質特性は改善されていなかった、と説明した。
 
成形された中間転写ベルトの周方向の抵抗データを見せていただいたが、ウェルド以外は、抵抗偏差は小さかった。相談者も6ナイロンの効果が出ている、と胸を張っていた。ウェルド部分について詳しく分析したのか尋ねたところ、電子顕微鏡写真や光学顕微鏡写真を多数見せてくれた。
 
百聞は一見にしかず、という科学的なアプローチだった。しかし、見せていただいた写真からは何も分からなかった。カーボンの個数を数えてみたか尋ねたところ、それは難しい、と言われた。
 
確かに質問した当方もその場で数える気にはならない数である。しかし、品質データに表れている結果は、カーボンの個数がウェルド部分で多くなっている、と解釈しなければ説明できない現象である(注)。
 
すなわち、このベルトの周方向における抵抗ばらつきの問題は、ウェルド部分でパーコレーション転移が起きて抵抗が下がっている現象と推定され、顕微鏡写真では分散状態が同じようなので、導電相の個数が変化している、と科学的に推論を進めることができる。
 
しかし、多数のカーボンの粒子を数えるのは至難の技であった。また、数えられるように拡大したならば、全体の現象を捉えることができなくなる。
 
このような解析の科学的限界以外に、PPSに6ナイロンとカーボンとを一緒に混練しているにもかかわらず、顕微鏡写真に写っている像では、6ナイロン相内部にカーボンが取り込まれていないことを奇妙に思った。
 
当方のゴム会社における実践知では、二相に分離した場合、カーボンと親和性の高い相の内部に一部カーボンが取り込まれたりする。技が必要だが、親和性の高い相にすべてのカーボンを分散させることも可能である。
 
1990年代に読んだ論文でマトリックスが二相分離したときのカーボンの分散状態を議論している研究があった。この研究でも相談者が見せてくれたカーボンの分散状態だった。
 
その論文の著者に学会でお会いしたときにカーボンの分散が不十分ではないかと尋ねたら、大学の実験用ニーダーで混練した結果だから、と愛想の無い簡単な回答だった。
 

アカデミアの先生は混練プロセスで高分子の高次構造が変わったり、フィラーの分散状態が変わったりする現象に無頓着なのかもしれない。しかし実務では重要なことなのである。コンパウンドのモルフォロジーを科学的に考察する時には、混練プロセスや混練条件との関係を科学的に考察することが重要になってくる。真理が一つの科学で高分子のモルフォロジーは扱いにくい分野だ。
 

 

(注)単身赴任後、部下にカーボンの個数を数えさせたら、ウェルド部では1割ほどカーボンが多い、という結果が得られている。1割の違いで生じる抵抗変化ではないので、カーボン粒子間の接触抵抗も疑うことになり、面白いアイデアがその後生まれた。
 すなわち導電性粒子の接触抵抗は粒子間にかかる圧力で二桁以上変化する。これは、粒子間がわずかに離れていても電子はホッピング伝導で流れることができ、距離で電流が大きく変化するからである。高分子に分散した導電性粒子の接触抵抗は、その密度を上げたり、ひっぱたりすると変化させることができる。かつて酸化スズゾルの帯電防止層を研究していたときに、延伸しながら帯電防止層の電気抵抗を測定したことがある。このときパーコレーション転移前後で変化の様子は変わる(日本化学会講演賞受賞)が、やはり2桁以上変化した。この機能を用いると、コンパウンドの段階で1桁程度抵抗がばらついても、押出成形段階で引き取り速度を調整することにより、抵抗をスペックにあわせることが可能になる。
 これはノウハウのように思えるが、科学的に考えれば当たり前の方法である。しかし、この方法が使えるためには、カーボンの分散がソフト凝集状態でうまくクラスターを生成している必要がある。そうでない場合には、常時引き取り速度を変化させながら押出成形を行うことになる。この理由は少し考えていただくと分かる。ソフト凝集したカーボン分散状態を作り出す混練技術がノウハウとして重要である。これはゴム会社でセラミックスとゴムのハイブリッドの研究を行っていたときに獲得した技術である。

カテゴリー : 一般 連載 電気/電子材料 高分子

pagetop

2015.08/07 未だ科学は発展途上(17)

昨日はレーザープリンターの仕組みを簡単に説明したが、中間転写ベルトの性能は、周方向の抵抗偏差以外に基材の誘電率や表面の濡れ性など様々な因子に左右される。押出成形ではつきもののベルト表面の凹凸は、画質に致命的な影響を与える。
 
一つ一つの特性と画質との関係は、科学的推論からおおよそ見当がつくが、一部のパラメーターを除き数値シミュレーションできるところまで解明されていない。おそらくすべてを科学的に完璧に記述するのは不可能だろうと思われる。だからベルト開発で問題が起きたときには職人的発想が科学的なそれよりも大当たりする可能性が高い。ところが、6ナイロンとPPSの組み合わせは前任者が科学的推論を行い考え出したアイデアで問題解決も科学的に行っていた。
 
6ナイロンを数%添加したPPSの材料設計は科学的ではあるが設計者の願望が強い考え方だ。しかしこの仕事を相談されたときに、6ナイロンを選んでいたことにとりあえず感心した。そしてすぐに、科学的に正しくないが技術のチャレンジテーマとして面白い、6ナイロンをPPSに相溶させるという発想がひらめき、サラリーマン最後の仕事として請け負いたい、と思った(注)。
 
ところで、設計者の考え方はこうだった。絶縁体であるPPSを半導体にするためにカーボンを添加したペレットを一流のコンパウンドメーカーに作らせて研究していた。しかし、カーボンの分散が安定しないために、押出成形工程でカーボンが暴れ、ウェルド部分における抵抗ばらつきが異常に大きくなり、ベルトの周方向の抵抗偏差が2桁近くになる問題に遭遇した。
 
そこで、改善策として次の案を考えた。PPSに相溶しない6ナイロンを分散したならば、PPSが海で6ナイロンが島となる海島構造に相分離した高次構造となるだろう。また、カーボン表面には酸化されて生成したカルボン酸があるから、6ナイロンの島に吸着されカーボンの分散安定化を期待できる(これは科学的な願望である)。
 
ここで、6ナイロンがPPSに相溶しないで島相になるという考え方は、教科書にも書かれているフローリー・ハギンズ理論から科学的に正しいといえる。さらに海島の相分離高次構造で島を小さくしたいので島成分を少量添加としたところもよく勉強していると思った。またカーボン粒子表面にカルボン酸が生成していることは論文などに書かれており、彼が採用しているカーボンでは、表面にカルボン酸の多い素材だったので科学に忠実な仕事をする人だと感じた。
 
科学的に正しいと思われる推論でコンパウンドの材料設計をしたにもかかわらず、押出成形で製造したベルトでは期待通りの成果が現れなかった。さらに科学に裏切られる悲劇は続き、電子顕微鏡でベルトの高次構造観察を行っても6ナイロンの海島構造はできており、きれいな均一な構造になっている。カーボンの分散も画像として均一に見えるので、ベルト周方向の抵抗ばらつきが発生している原因がわからない、と言うのだ。
 
形式知だけで成立していない世界において科学一本槍で突き進むと裏切られる現実をご存じない純粋な人だと思った。転職する原因となった電気粘性流体の増粘の問題を相談してきた人もそうだった。形式知だけで成り立つ世界、例えば入試の数学の問題などは、科学的に考えなければ正解は絶対に出ない。しかしそのような世界でもエレガントな解答は実践知で生まれる。
 
その昔大学入試の模擬試験で複素数で計算すると容易に証明できる図形問題を時間が無かったのでベクトルを使い、たった3行で解答して正解となりとんでもない偏差値がレコードされた時にはびっくりした。ところが開発の現場では、時間が十分あっても暗黙知や実践知をフル動員しなければ問題解決できない場合が多い。また、科学的に解決困難な仕事を科学的に進めると否定証明に陥る話を以前紹介している。
 
この相談者の尊敬できる点は、科学的に考え科学的に解析して見通しの暗い結論が得られていても否定的な答えを絶対に出したくないともがいている点である。なんとしても6ナイロンとPPSの組み合わせで技術を完成させたいと当方に相談している。初対面にもかかわらず、当方なら絶対できる、とまで言い切る一途さである。さらには当方が仕事をやりやすいように相談者の役割まで交代してくれるといってきた。
 
後日分かったことだが、開発管理がステージゲート法で行われており、すでにファイナルステージに至り配合処方を変更することができない状態だったのが真相で、これまでのマネジメントも含め、この開発に成功する以外その人の出世の可能性が無くなるという状況だった。二つの会社の合併直後で管理職のリストラが進められている最中だったので、自ら役割を交代してでも、と言いきった点は並の部長ではない、と感じた。
 
どのような事情があっても、科学に反する技術で問題解決しようと決心した当方にはどうでもよい話だった。それよりもゴム会社の指導社員(新入社員時代)から頂いた宿題を定年間近に解決できるチャンスが偶然訪れたのがうれしかった。問題は、残された時間が半年しかない、という点だけだった。ただ、この時間の少なさはこれまでの開発経験を一人部屋でまとめた「研究開発必勝法」を試すのに好都合であった。

 

(注)以前倉庫として使用されていた部屋で一人住まいの見るからに不遇な状況だった。このような処遇でも会社に大きな貢献をするために相談者の問題を他社が追従できないぐらい最も高いレベルの技術で完成することである、と真摯に考えていたのだ(某社で昨年追い出し部屋問題が新聞で騒がれたが、定年間近に退職を促すような扱いを受けても騒ぐ話ではないのである。このような場合にサラリーマンならば追い出し部屋と考えるのではなく、まだチャンスを残してくれた、ととらえるべきである。そのように考えられないならさっさと会社を辞めるほうが精神衛生上良い。成果を軽視する会社もあればゴム会社のように人材を大切にする会社もある。それぞれの組織の風土である。また、芸が身を助け、という言葉があるように、成果を出した評判があればここで書いているようなこともおきる。)。これが科学ではなく技術の視点で問題をとらえた本当の理由である。科学のような形式知だけで商品を完成しても、他社が科学的に解析を進めれば簡単にリベールできる。分析や解析は科学で問題解決すると簡単であることは既に述べた。ところが暗黙知や実践知の塊の技術ならば容易にリベールできない。今メーカ-が目指すべきはそのような技術である。 当たり前の科学技術を開発しても特許で守られるのはせいぜい20年である。

カテゴリー : 一般 連載 電気/電子材料 高分子

pagetop