活動報告

新着記事

カテゴリー

キーワード検索

2014.08/31 省エネタイヤ(1)

タイヤの残溝が少なくなったので、タイヤを交換した。12年勤務したゴム会社のタイヤである。交換前のタイヤは10年使用したにも関わらず外観はひび割れも無くきれいだった。技術の進歩を感じた。

 

新車への交換を考えていたのでタイヤ交換を見送るつもりであったが、万が一を考えて6ケ月後の車検前であるが交換を決意した。恐らく車は廃車にされるので、交換したタイヤはムダになるかもしれないが、タイヤメーカーに勤務した経験からリスク回避のため新しいタイヤへ交換した。

 

驚いたのは、省エネタイヤがブームで店頭には省エネの文字が並ぶ。新入社員時代にも同様のブームがあったがこれほどでは無かった。40年ほど前二回のオイルショック騒動で石油資源に対する関心が高まり、省エネタイヤが開発された。

 

自動車全体に対するタイヤの省エネ効果はわずかであっても、省エネタイヤとそうでないタイヤとの省エネルギーの差は大きく、宣伝に活用された。この省エネタイヤの技術に使われたのがシリカである。

 

タイヤの補強材料にはカーボンが用いられているが、この一部をシリカに置き換えることで、エネルギーロスが減少しタイヤの転がり抵抗が小さくなる。ただ、エネルギーロスが小さくなるとグリップ力が悪くなる(WET SKIDが低下)ので、転がり抵抗とWET SKIDのバランスをとる必要が出てくる。

 

当時タイヤ用ゴムへのシリカの配合技術は先端技術だった。カーボンフィラーでは対応出来ない転がり抵抗とWET SKIDのバランスをうまくとることのできる、コストの安い唯一のフィラーとしてシリカは注目された。

 

 

カテゴリー : 一般 高分子

pagetop

2014.08/30 餅つき

子供の頃、夏休みでも餅米が手に入ると餅をついていたような記憶がある。夏の餅つきはともかく年末の餅つきは年中行事の一つであった。家を新築してから、餅つきに使用していた広い土間が無くなり、使っていた石臼が新しくできた庭のオブジェになったために餅つきの行事は無くなった。親類からの頂き物は、お祝いでなくとも赤飯を炊くのに使われた。

 

餅つきは子供の頃の楽しい思い出の一つだった。餅はネバネバ物質であるが、なぜか触れることも食べることも抵抗がなかった。生まれたときから接していたためだろう。餅つきをやってみたいと思っていたが、残念ながらいつも見ているだけで、餅をつくのは父と兄の役目だった。

 

餅を返すのは姉の役目で、母は蒸す係だった。当方はつき上がった餅をつまみ食いしながら成形する仕事をたまに担当していた。つまみ食いが多いので、毎年途中からお役御免になっていた。

 

餅つきで面白かったのは食紅を添加するときれいな桜色のお餅ができあがることだ。杵でただついているだけである。返しの操作で混ぜるプロセスもあるのだが、食紅の分散に大きく寄与しているのは、杵でついたときである。

 

杵でついたときに食紅は全体に広がる。その様子は見ていて不思議だった。今ならば剪断流動と伸張流動が同時に働くカオス混合のような混練プロセスだから効率が良い、と理解できるが昔は不思議だった。

 

この時の思い出は、退職前5年間担当した電子写真のキーパーツ開発で大いに役だった。中間転写ベルト用コンパウンドの生産ライン短期立ち上げや難燃剤を用いないUL94-V2通過の内装材開発という成果に結びついた。後者は回収PETボトルを80%利用した環境樹脂である。この回収PETボトルを用いた樹脂開発の仕事は退職後社長賞を受賞したとの知らせが元同僚から届いた。

カテゴリー : 一般 高分子

pagetop

2014.08/27 混練

混練とは「混ぜる」ことと「練る」ことをおこなうプロセスである。「混ぜる」ことは日常の行動で、例えばカードゲームやマージャン、料理などで経験し、直感的に理解できる。「練る」ことについては、意外と日常意識しなければ行っていない。

 

汚い話で恐縮だが、昔子供は青い鼻水を垂らしていた。なぜ今の子は透明な鼻水で昔の子供が青かったのか知らないが、その汚い鼻水で遊んでいる子もいた。戦後10年と少ししか経過していない名古屋のはずれには、まだ大空襲の傷跡が残っており、今のように遊びが豊富では無かった。

 

子供が遊びを創り出さなければいけない時代でもあった。鼻水も遊びの道具であったが、その遊びが始まると当方は気持ち悪いから家に逃げ帰った。ネバネバを練るプロセスを見ると子供の頃のトラウマであまり気持ちの良い感じがしない。納豆も食べられるようになったのは結婚してからである。

 

トラウマとなっていたプロセスが当方の仕事として重要なスキルの一つになっているのだから人生はわからない。気持ち悪くても目を背けず真正面から取り組まなくてはならない苦痛。ゴム練りを最初に体験したときには地獄であった。やや緑色をしていたアロマ油は、特に気持ち悪かった。

 

そんな経験から「混ぜる」と「練る」には大きな違いがあり、混練技術に接する前から興味があった。「混ぜて」いるだけなら性状の変化は少ないが、「練っていると」物質の状態が大きく変化する場合があるのだ。青い鼻水は粘度が増し付着したときに拭き取るとコーティングされたような跡が残った。子供心に単なる水と異なる現象について不思議に思った。

 

混練の教科書を読むと分配混合と分散混合の話が出てくる。混練プロセスをモデルで説明するための概念だが、これは混練の理解を誤った方に導くような気がする。混合により分散が進む場合の説明ならば良いかもしれないが、「練り」の部分をこのモデルでは説明していない。

 

カテゴリー : 一般 高分子

pagetop

2014.08/26 二軸混練機

二軸混練機は押出機を基にして発展している連続式混練機である。未だに完成版の混練機は存在しない。かつて10数年前に国研でL/Dの大変大きな混練機が開発されたが、それすらも高い評価を受けていない。

 

連続式混練機に対して、古くからゴムなどの混練では、バンバリーとロールによるバッチ式混練が用いられてきた。例えば動的加硫技術を用いたTPVは、バッチ式混練プロセスで製造された樹脂補強ゴムの性能に及ばない。

 

TPVの性能には幾つか問題があっても射出成形可能な安価なゴムという性質があり、歯ブラシの柄の部分に使われているゴムやマウスの一部などに使用されている。最近では、自動車部品に使われているバッチプロセスによる加硫ゴムの分野にも使われ始めた。少しずつ改良されているのである。

 

TPVも混練プロセスを工夫してやるとその性能が上がる。例えば先ほど述べたようにバッチ式プロセスで混練を行い、プレス加硫を行うと連続式混練機で製造したゴムよりも圧縮永久歪みなどが大きく改良される。

 

この事実は連続式混練機の性能が未だバッチ式プロセスに追いついていないことを示している。20世紀末にウトラッキーによるEFMが発表されたが、普及しなかった。それなりに連続式混練機の性能向上に寄与する装置であったが生産性が低かった。

 

当方が開発したカオス混合装置は、EFM同様に二軸混練機の先に取り付けて使用するが、生産性が高いのが特徴である。この装置を二軸混練機の先に取り付けて、PPSと6ナイロンを混練するとそれぞれが相溶した均一なブレンド物、ポリマーアロイが生成する。また、この10年用途が広がっているPC/ABSを混練すると高次構造の細かくなったポリマーアロイが得られる。本件に関してご興味のある方はお問い合わせください。

 

 

カテゴリー : 高分子

pagetop

2014.08/21 執筆依頼

昨日工業用途のポリマー材料,エンジニアリングプラスチック,合成ゴムなどの 高分子材料の研究開発をテーマにした技術情報誌「Polyfile]から、2014年11月号の特集について執筆依頼を受けた。執筆内容については公開して良いのかどうか不明だが、当方の体得している技術の一つについて、科学と技術の視点にわけて、解説する予定でいる。もしご関心のある方は、購入してご一読ください。

 

これまでこのような業界誌からの執筆依頼を受けてきたが、可能な限り科学的に書くことを心がけてきた。しかし、それでも伝えたいことを書くためには、妄想と批判されても技術者の視点で見たときのポイントを述べるようこころがけた。

 

しかし、「妄想」が多すぎた場合に同僚から「好き勝手に書いている」とか、「よくあそこまで言いきるね」とか批判されてきた。業界誌は学会誌と異なるので技術者の妄想を書いても許されると思い、当方は書いてきたが、このような批判を受けると少しは心が痛む。

 

当方も学位を取得し、科学の世界で研究を行いたいと思っている技術者である。しかし、科学の世界にも定員があり、そこからはじき出されている身分では、せめて科学の世界で活躍されている研究者の先をゆく技術(注)を開発したい、と自己実現の目標を設定し研鑽してきた。

 

例えばSTAP細胞の論文では捏造と騒がれているが、あれは科学の世界で見ているからだ。もし本当にSTAP細胞ができているならば、技術論文として優れた論文である。STAP細胞の研究では、STAP細胞を製造する技術が無いために科学の研究ができない状態なのだ。

 

iPS細胞では、最初にそれを作る技術を消去法で開発し、科学の研究を開始している。STAP細胞については、小保方さんが200回も作成した、と言っているが、それを再現できる技術まで創り上げていなかったから問題になっているのだ。笹井さんも「あれは技術論文だ」と言えば良かった。

 

しかし、彼の立場ではそれが許されないだけでなく再現できないことも苦しい状況に追い込んだ。再現できていれば捏造ではなく妄想を分かりやすくするために脚色した技術論文となる。多くの特許がこのように出願されており、捏造などと批判されていない。技術では再現さえできれば、分かりやすく説明するための工夫は捏造とよばない。

 

一人の人間が200回も作成できているならば、いつかは第三者も作成できるようになる。当方は高純度SiCの前駆体製造技術について、たまたま電気炉の暴走があり1回成功しただけで、2億4千万円の先行投資をゴム会社で頂いている。そしてその先行投資された技術は今でもブリヂストンで事業として継続されている。

 

技術とは科学的に証明できなくても、機能をロバストよく再現できればそれで完成といえるのだ。タグチメソッドはそれを実現できる唯一の方法で、日本で生まれアメリカで育ち、日本に逆輸入された優れた問題解決法である。

 

今回執筆依頼を受けた内容について詳細は雑誌のPR記事をご覧頂きたいが、これまで公開してこなかった30年前に開発した技術についても惜しみなく公開するのでご一読ください。ちなみに本技術については、ゴム会社でたった2年だけ担当した技術で、退職前の一年間の最後の暇つぶしの期間に30年前を思い出しながら商品を一点仕上げることができた、由緒正しき「妄想」である。

 

技術とはそれを身につけることができるならば、担当した期間は無関係である。技術者の中には5年以上も担当しながら技術の完成を実現できない人もいる。一方一週間程度でも優れた技術を体得する人もいる。高純度SiCの技術はたった一日で生まれ、その一日で体得できた技術である。1日という期間であるが、未だに注目され時々質問を受ける。また某社からは数年前に改めて異なる視点で特許出願がされていた。

 

www.miragiken.com 」では、未来技術についてマンガで書いている。ドラッカーは誰も見たことの無い世界がはじまる、と予言し他界されたが、誰も見たことの無い世界を書くのにマンガは適した表現手段である。

 

(注)電気粘性流体の技術をいくつか開発したが、FDを壊して開発活動を妨害してきたのは研究者である。犯人は、「なぜそんなに早くできるのか、隠している論文を見せよ」とある日迫ってきたが、とんでもない勘違いである。電気粘性流体の科学論文など読んでいなかった。技術者は、その心眼で現象を眺め機能が正しく働く様子を心に描き、技術をデザインしているのである。その具体的方法を弊社では研究開発必勝法として販売している。

カテゴリー : 一般 宣伝 高分子

pagetop

2014.08/19 高分子の難燃化(5)

ホウ酸エステルとリン酸エステルを組み合わせた難燃化システムは、軟質ポリウレタン発泡体の効果的な難燃剤だった。また、中間体である、ボロンホスフェート誘導体も単離することに成功した。燃焼面にきれいなガラス相の薄膜を形成するのだ。ゆえにドリッピングも防いだ。

 

このヒントは始末書を書かされた開発成果ホスファゼン変性軟質ポリウレタンフォームから得られた。すなわち通常のリン酸エステルを高分子に添加すると、燃焼時にリン酸エステルは熱分解してオルソリン酸を生成する。このオルソリン酸は250℃前後で揮発するので、燃焼時には燃焼している系外へ放出される。

 

これが空気を遮断して高分子の炭化を促進すると説明した教科書もあるが、この説明にはやや無理がある。なぜなら三酸化アンチモンとハロゲン系難燃剤の組み合わせほど難燃性が高くないからだ。このシステムで生成するハロゲン化アンチモンは強力な難燃剤である。

 

リン系の難燃剤は主に燃焼系内で機能して炭化促進に機能している、と考えた方が実際の現象とあってくる。またこのように考えると、オルソリン酸を系内に固定化するアイデアが出てくる。ホウ酸エステルとリン酸エステルの組み合わせシステムはこのような発想から生み出された。

 

ホスファゼンは高温度で重合するので気相に放出されない。これは燃焼後の残渣を調べるとPNOが検出されるのと、組成分析から得られる80%以上のPが残っている事実とで証明できる。

 

リン系難燃剤を効果的に利用するには、燃焼時に生成するオルソリン酸をうまく系内に固定化して効果的に難燃化できる方法を考えれば良い。詳しくは弊社へ質問してください。またリケジョが活躍する www.miragiken.com でも未来の高分子難燃化技術として扱う予定です。

 

カテゴリー : 連載 高分子

pagetop

2014.08/18 高分子の難燃化(4)

UL94規格ではドリップの有無で評価が大きく変わる。例えばV0試験では、ドリップがあった場合にいくら燃焼時間が短くとも硝化綿が燃焼するとV2となってしまう。この規格は実火災を念頭においた規格であり、科学的な見地から開発されたLOI評価法と相関が無い。

 

環境対応の必要性からノンハロゲン化技術に関心が集まり、リン系難燃剤の開発が進められ、耐熱性の高い新たなリン酸エステル系難燃剤もこの十年にいくつか開発された。リン系難燃剤では、その難燃化機構からリン原子の濃度とLOIとは相関する傾向にある。ポリウレタンや、PS、PC、ABS等でそのような実験結果が得られている。

 

しかし、LOIが24を越えたあたりから、リン原子の量が増えてもLOIが増加しなくなる場合がある。LOIが18前後の樹脂の場合では、21未満と21以上では相関係数が変化する。すなわちLOIが21は変曲点であり、それ以上では傾きが小さくなる傾向がある。

 

その結果、UL試験のV0以上を狙おうとした場合に難燃剤を20部近くも添加しなければいけなくなる場合が出てくる。コストも物性も考えなければこのような材料設計でも良いが、コストや物性のバランスを取ろうとすると難燃剤の添加量はせめて15%未満にしたい。

 

そうすると難燃助剤(と書いて良いのか知らないが)の添加という発想が出てくる。有名なところでは、ドリップ防止を狙ったフッソ樹脂の添加や、イントメッセント系の設計でメラミン樹脂との組み合わせを考えたりする。また、PC系ではシリコーンをグラフトしたPC樹脂を用いるアイデアも特許出願されている。

 

こうした考え方がいろいろ研究されてきて、特許出願が2000年頃から増えてきた。当方は、1980年にポリウレタン発泡体をホスファゼン変性して、10部未満で高い難燃性の発泡樹脂を開発し特許では無く始末書を書いている。そして始末書の汚名挽回策として燃焼時にガラスを生成するコンセプトで、硼酸エステルとリン酸エステルの組み合わせシステムを開発した。世間より20年早い発想でノンハロゲン難燃システムを完成した。

 

 

カテゴリー : 連載 高分子

pagetop

2014.08/17 高分子の難燃化(3)

高分子の難燃化には難燃剤が用いられている。難燃剤の添加で高分子材料の物性は低下する。特に靱性の低下が著しいので注意を要する。また難燃剤が可塑剤として働く場合があるので、弾性率の低下を心配しなくてはいけない。弾性率が低下すれば、引張強度や曲強度に影響が出る。

 

物性への影響を小さくして高い難燃レベルを達成する方法は、三酸化アンチモンと臭素系あるいは塩素系難燃剤を併用する方法である。経験的には、物性への影響を小さくしたいときにこの方法で最も高い難燃化レベルを実現できる。

 

しかし、最近環境への影響からこの系を用いることができなくなってきた。各種規制から制限を受けていないハロゲン系難燃剤も存在するが、実火災の安全性という観点からはハロゲン系難燃剤は1%未満の添加に抑えるべきである。

 

ノンハロゲン系難燃剤として三酸化アンチモンに匹敵する有効な難燃剤の探索が進められた。しかし、未だ見つかっていない。リン系難燃剤は炭化促進型として知られ、イントメッセント系の難燃剤もこの系であるが、炭化型で満足な難燃性を得ようとすると高分子材料に10%以上添加しなければいけない。多いときには20%も必要になる。

 

LOIを21以上にするだけならば5%程度の添加で実現できる場合も存在する。しかし、UL94-V0レベルまで達成しようとすると一般的に10%以上の添加が必要になる。面白いのはリン系難燃剤の種類で高分子材料との相性が存在することである。

 

難燃剤メーカーから代表的難燃剤について技術資料が公開されており自分が難燃化したい高分子材料の難燃剤選択に便利である。しかし、こうした技術資料だけで開発がうまく進めばありがたいがたいていの場合に技術資料の再現ができず悩むことになる。

カテゴリー : 連載 高分子

pagetop

2014.08/16 高分子の難燃化(2)

一部の高分子について燃焼挙動の科学的解析が進み、難燃剤の機能について明らかになっている。しかし大半の高分子材料と難燃剤については未解明である。明らかになっている高分子材料についても実火災でその様に熱分解している、という証明はできていない。

 

高分子の難燃化というテーマは科学的に研究を進めにくい分野である。燃焼は酸化が激しくなった現象として説明されるが、同時に高分子の熱分解も起きている。溶融も生じる。ゆえに実火災に有効な科学的な高分子難燃化手法という万能手法は存在しない。実火災に対しては、各種難燃化規格に通過するように難燃化「技術」で対応することになる。

 

高分子の難燃化手法には技術的に二つの戦略が存在する。1.溶融型と2.炭化型である。1は、高分子材料に着火したとたんに溶融を促進し、火を消す、という手法である。2は、燃焼面に耐熱性の高い炭化層を形成し火を消す方法である。

 

常温のLOIで見たときに、1の戦略では、21以下でも自己消火性を示す材料を設計可能だが、2では必ずLOIを21以上になるように設計しなければいけない。2についてはイントメッセント系の難燃剤が有効と言われている。

 

UL規格で見たときに、溶融物の存在が許されるときには、1の戦略もとれるが、許されないときには、2の戦略だけになる。すなわち、この戦略は規格と達成したいレベルで選択することになる。UL94-5Vレベルの高分子材料の設計を目指す場合には、効率的に炭化層を形成する材料設計が重要になる。

 

 

カテゴリー : 連載 高分子

pagetop

2014.08/15 高分子の難燃化(1)

どのような高分子でも、高温度の空気中で燃える。これを科学的に示すには温度を変えて極限酸素指数(LOI)を測定すれば良い。ちなみに空気をLOIで示すと21である。すなわちLOIとは酸素濃度を指数化したパラメーターで、空気には21%の酸素が含まれているからLOIは21となる。

 

LOIが21以上の高分子材料は空気中では燃焼を続けることができないので自己消火性、すなわち自然と火が消える。21以下の材料では、空気中で着火した場合に燃え続ける。このLOIを各温度雰囲気で測定すると、室温で21以上の材料であっても、ある温度以上で21以下になる点が存在する。

 

すなわち高分子材料は皆500℃以上にも達する実火災で必ず燃えることがこの実験で分かってくる。これが分かってくると、高分子材料の不燃化などという技術テーマを企画したりしない。せいぜい難燃化である。材料に火がついても空気中で燃えにくければ、あるいは自己消火性を示せば、少なくとも火源とはならない。多くの電化製品や事務機、電子機器はこのような観点で設計されている。

 

高分子材料の難燃化に関する研究は1960年代から1980年代にかけて活発に行われた。しかし科学的な研究の結論は未だに出ていない。技術的な見通しは、技術者によりそれぞれのノウハウとしてまとまっている。科学と技術を厳密に意識しなければいけない分野の一つとして、この高分子の難燃化という分野がある。

 

科学的な研究が最も進んだ1980年前後には様々な評価技術が登場している。LOIもこの頃登場した。UL試験も同様の時期である。コーンカロリメーターが実験装置として販売されたのは1980年代末である。

 

 

カテゴリー : 連載 高分子

pagetop