2015年にストローが鼻に刺さった亀の紹介があり、脱プラスチックが騒がれるようになった。また、プラスチックが完全に分解されず、マイクロプラスチックとなり、人間の体内から見つかるとますますプラスチックごみの問題に対して厳しい意見が出てくる。
20年ほど前に環境関連の法律が多数施行された。当時環境問題の対策として生分解ポリマーがもてはやされた。しかし、マイクロプラスチックスで進行する海洋汚染が報告されて、この生分解ポリマーに対して環境問題の解決策となるのか疑問符がつくようになった。
また、エジプトのミイラにまかれたセルロースがその原形をとどめているのを目にすると、現実の高分子の劣化速度が実験室のそれよりも長いことが想像される。
かつて、高分子の劣化が学会で議論されていたが、その一つに紫外線照射で高分子が分解し劣化する問題があった。この時は高分子材料を利用する視点で研究されていたので耐久性を向上させる各種添加剤が検討されている。
この添加剤の中には有害なものも存在するということで、今その見直しが行われており、添加剤メーカーにとってプラゴミ問題はビジネスチャンスとなっている。ところがこの問題について海洋汚染の研究が進むにつれ他の現象が見つかって、その解決は一筋縄でいかないことが見えてきた。
脱プラスチックが叫ばれるようになったのは、海洋汚染の実態がひき金だが、このやや過激なフレーズは科学の現状を考えると一つの正解を示している、と言わざるを得ない。
科学の視点では、すなわちプラごみ問題を科学的に解析してゆくと、脱プラスチックが正解となるのだろうけれど、我々の身の周りを見ると今更脱プラスチックなど不可能である。
しかし、ここで絶望的になる必要は無い。本欄で書き続けてきているように、科学は一つの現象の見方であり、科学の視点で難しくても、他の視点でみれば解決策があるかもしれないのだ。
それはこれまで技術開発されてきた製品について科学で100%リベールされていないことからもご理解いただけると思う。すなわち技術開発では、科学で解決策が無くても何とかしてきた歴史がある。
高分子の劣化について、これまで科学的に解析され、その対策のために添加剤が開発されてきたことを先に述べたが、その添加剤が用いられていても海洋ゴミでは高分子が太陽光で分解され、二酸化炭素を発生し、マイクロプラスチックスになって漂っている。
この現象について詳細を省略するが、これまでの高分子の劣化と崩壊に関する科学の研究について見直しをしなければいけないのではないかと考えている。海洋汚染の問題を考えていると、これまでの高分子劣化研究がタコつぼの奥にこびりついた水垢を調べていたような印象を受ける。
ちなみに学生時代から当方は学会活動をしていたが、就職して初めての学会活動は、始末書を書く、書かないでもめていた時に、その上司から頼まれて発表した「高分子の崩壊と安定化研究会」である。
ポリウレタンの熱分解について当方の研究成果を発表したのだが、新入社員の始末書問題では、このことも考え合わせるとなぜ成果を出した当方が書かなければいけなかったのか理解不能(注)。ちなみにポリウレタンの熱分解研究は上司に指示されたテーマではなく、難燃化技術を開発していた過程で疑問が出てきてその解決のためにサービス残業して行っている。
入社し2年経っていないという理由で残業代をつけることができなかった。それゆえ、サービス残業ではない、という説明を上司から受けたり、「趣味で仕事をするな」と言われながら研究を進めた思い出がある。
環境問題は暗いテーマであるにもかかわらず、地球規模の問題でスケールが大きすぎて考えていても落ち込まない。一方、FD問題やこの始末書問題は、それに比較すると小さい問題であるにもかかわらず、トラウマとなっているので暗くなる。部下を指導される立場の方は、その部下の老後も考えてやってほしい。
(注)「世界初の新技術を開発してほしい」という希望も製造部門から出されていた、と伺っている。そこで張り切って、当時の新素材ホスファゼンのプレポリマーを新規開発し、工場試作の成功を実現している。この試作の交渉を新入社員ができるわけではなく、また試作は製造部門も参加していたので両部門合意が取れていたはずである。そもそも失敗したわけではないのに、市販されていない素材を使ってすぐに事業展開ができないという理由で、新入社員に始末書を書け、と言う命令は、未だに理解できない。今でいうところのパワハラに負けて始末書を書いているが、始末書に燃焼時の熱でガラスを生成しポリマーを難燃化する企画を添付できて、それを実用化できた一連の出来事を同期に話しても笑い話になってしまうのがつらい。実話である。今以上に当時はパワハラが横行していたが、日本中の新入社員もパワーにあふれていた時代である。
カテゴリー : 一般 高分子
pagetop
ストローが鼻に刺さったウミガメや太平洋ゴミベルトの話題で環境問題は新たなステージになった。そのとたんに脱プラスチックスの大合唱である。
このような現象は当方の若い時にも経験があり、「脱」の字が週刊誌の紙面を踊ったが、篠山紀信氏の海に半分浮かんだ山口百恵の水着写真が出て沈静化し、その後人気が上り坂の段階で彼女は突然の引退である。
「脱–」というタイトルは刺激的であるが、少し想像力を働かせれば不可能な対象に対して用いるべきではない。期待だけ膨らませておいて何も実現せず、みかけの解決案で満足し、本質的な問題解決に至らない。
脱プラスチックと言う前に脱石油のほうが本質に近くなる。しかし、この脱石油も身の周りの状況を見れば現実的な解ではない。そもそも「脱」ばかりを頭に描きたくなる性分の人が問題なのだ。
「脱」ではなくプラスチックをはじめとした工業材料を「自然界と調和させる技術」が今求められている。この技術について、ご興味のあるかたは弊社へお問い合わせください。
科学では真理が一つが大原則となり、このような場合に自己矛盾を起こしかねない。環境問題は、科学的に明らかにする必要があるが、その解決策は、科学的である必要はなく、科学的な矛盾をうまく解決し自然界とうまく調和していることこそ重要だ。
それは、「脱」の大合唱に応え写された一枚の写真、水着が必然となった篠山紀信氏の写真のようでもあり、自然界がプラスチックスを邪魔者扱いしていない姿である。そのような姿を技術で創り出すのが環境技術であり、2か月後のセミナーで講演いたします。
カテゴリー : 一般 高分子
pagetop
15年前に特許が公開されているが、PPS/6ナイロン/カーボンの組成で製造された半導体ベルトは、非科学的な高次構造のコンパウンドから製造されている。特許は非科学的でも技術で実現できれば権利として成立する。
フローリー・ハギンズ理論では、PPSと6ナイロンの相溶は否定される。しかし、この半導体ベルトでは、大半の6ナイロンがPPSに相溶している。
この半導体ベルトは、科学の理論で否定される組み合わせにおいて相溶とスピノーダル分解を制御して現れるカーボンのソフト凝集体が分散した高次構造となるように設計した。
すなわち、コンパウンド段階でPPSと6ナイロンとを相溶させて、押出条件の制御により、6ナイロンをわずかにスピノーダル分解を起こして析出させて、カーボンをその相分離し始めた6ナイロン相にソフト凝集体として閉じ込めている。
このような高次構造設計は科学的に考えていては絶対に思いつかないアイデアである。
このようにこのアイデアを話したところ一流コンパウンドメーカーの技術者から笑われたので自分でそのようなコンパウンドを製造できるプラントを建てなければならない事態になり、ゴム会社時代と同様の徹夜業務をする機会に「恵まれた」。
3か月で立ち上げたプラントから目標となるコンパウンドが出来上がった時に、その仕事のために中途採用された若者は腰を抜かしたが、当方はその瞬間それほど感動しなかった。
むしろ非科学的視点で現場観察をして、コンパウンド設計を思いついたときに高純度SiCの合成に初めて成功した時と同様の感動を体験している。
非科学的な機能で制御された現象に出会う機会は多くてもその瞬間を常時とらえるためには、科学で固まった頭を一度ほぐす必要がある。
カテゴリー : 一般 高分子
pagetop
ガラス転移点(Tg)は、ガラスで観察される比熱変化の生じる温度である。ガラス状態は、無機材料でも高分子材料でも存在する。面白いのは、無機材料の非晶質体では、Tgが存在する場合だけをガラスと呼んで区別している。
高分子材料の非晶質体では、すべてガラス状態という前提でその体系が出来上がっている。面白いのは、Tgを有するはずの高分子材料を熱分析(DSC)したときに、Tgが観察されない現象が時々現れる。
そのようなときは、DSC測定時にTgと思われる温度付近で昇温を一時停止し、少しアニールしてから測定を継続するとTgが現れる。少し怪しいテクニックだが、高分子の研究者ならば皆知っており、論文にDSCを載せる必要がある時に、隠れてこのテクニックを使用している人もいるはずだ。
捏造ではないか、とも言いたくなる姑息な手段だが、何故か学会でも話題になっていない。高分子の非晶質相にはTgが存在しなければいけない前提になっている。そうでなければ高分子の非晶質相はすべてガラス状態という前提が崩れるからだ。
しかし、若い研究者はTgが現れない高分子の非晶質相とはどのようなものなのか考えた方が良い。当方は、考える時間がもったいないので、DSCを測定するときには、あらかじめTg近くの温度で2分ほど昇温を停止し、Tgが現れない状態に会わないようにするが。
カテゴリー : 一般 高分子
pagetop
高分子材料には何らかの添加剤が含まれ市場に提供されている。この添加剤が環境問題を考えるときに難しい問題を引き起こす。すなわち添加剤によっては代替材料が見つからない場合があるからだ。
家電リサイクル法はじめ各種環境関係の法律が制定され始めた20年ほど前に高分子同友会では環境関係の法律が高分子事業に及ぼす影響について議論している。そのとき抽出された大きな問題の一つに難燃剤があった。
どのような高分子でも火災が発生すれば燃える。そもそも火災とは急激に進行する酸化反応なので空気中で燃えない高分子など存在しない。このことを知っていたのかどうか知らないが、かぐや姫は求婚を迫る皇子に対し結婚の条件として絶対に燃えない衣を要求している。
空気中で絶対に燃えない不燃高分子は存在しないが、燃えにくい高分子は存在する。例えばPPSは着火してもすぐに火が消える。ゆえに高分子材料では火災に対して燃えにくくする機能を不燃化と言わずに難燃化と言っている。
PPSのように空気中の燃焼で自己消火性を示す材料は用途により難燃剤が不要となるが、高分子材料の多くは添加剤が無ければ空気中で自己消火性を示さないので、用途によっては難燃剤の添加が避けられない。
難燃化技術の説明を省略しているが、例えば電子材料への応用を考えたときに必要不可欠となる難燃剤の中には環境ホルモンや発がん性その他の環境負荷の大きな化合物が存在する。
そのような話を聞くと、難燃剤無添加の難燃化技術を開発しようと考える人も出てくるが、これはかぐや姫の発想と笑われる可能性がある。
そのような発想も理想追及のために必要かもしれないが、高分子の難燃化技術に詳しい人からは、絶対に困難だと反対される。高分子の燃えにくさという火災に対する絶対的尺度が存在しないので、各業界ごとに存在する難燃化規格を例に説明する。
例えばUL規格では、この規格にまったく合格しない高分子材料に添加剤を加えないで5VBという規格に合格するように変性できない。難燃剤の添加が不可欠である。
長年の経験から高分子材料の難燃化技術は、今日の環境問題の動向変化から20年前と異なる段階になてきており、技術の見直しが必要と思っている。だからどうしたらよいのかは、ご相談いただきたい。
カテゴリー : 一般 高分子
pagetop
高分子と環境問題について正しい解をだすのは難しい。そもそも地球環境のあるべき姿と現実の人類の活動とがあまりにも乖離しているからだ。その昔、恐竜はその肉体の大きさゆえにほろんだとされている。人類は肉体の大きさではなくその知の使い道を誤って滅びるのか、と悲観的なことを考えてしまう。
悲観的なことを考えていても仕方がないので、その時代の技術で実現可能な、少しでもよくなる方向を考えてゆこうとするのが健全な知の働かせ方である。そもそも人口爆発の問題さえも解決できていない。焼け石に水かもしれないが、最善と思われるできるところから対策をせざるを得ない、というのが地球規模で起きている問題である。
20年ほど前に高分子精密制御プロジェクトという国研が東工大中浜先生をリーダーとして推進されたが、産業界からは酷評された。少なくとも当方の評価よりも低い評価が当時の説明会でなされていたが、例えば分子一本の粘弾性データというようなその価値がわからない人には遊びにしか見えない渋い成果を出されていた。
バブルがはじけ国研の評価が厳しくなってきた時代なのでこのような渋い成果は酷評される。しかし、企業ではできないような実験では、それが実施されるだけでも新しい現象がそこで観察されるといった価値がある、と見るべきである。そこには新たな機能が隠れているかもしれないからだ。
1円でも儲かるような拾い物ができれば、それを膨らませて1億円以上とするのは技術者の仕事である。科学者と技術者の違いはこんなところにもあるが、とにかく鵜の目鷹の目で研究者と一緒に実験結果を好意的に眺めれば、面白いネタ程度のものを必ず拾える。
例えばとんでもないL/Dの二軸混練機を使用した研究やらウトラッキーのEFMやら実用性の無いと思われた設備の実験結果は、当方にとってカオス混合の発明や再生PET樹脂の開発に大変参考になった。
また、当時のアカデミアからの提案に強相関ソフトマテリアルの動的制御という概念があり、この説明に高分子材料の環境問題解決のための壮大な概念図が示されていた。
およそ今眺めてみても荒唐無稽と言っても良いような図なので産業界から顰蹙を買っても仕方がないのだが、そこに描かれているアイデアには、注目すべき点がある。
金属やセラミックス材料では加熱相分離により、それぞれの要素となる金属を結晶として取り出すことが可能であるが、高分子ではそのような手法をそのまま使えない。そのため特殊な相分離によりできる高次構造制御により機能を設計するというアイデアが提示されていた。
この考え方を近い形で中間転写ベルトの設計に活用させていただいた。そして無事量産に成功し、今でも生産されている。そしてその材料は、期待されたようにリサイクルすればするほどロバストが向上する。
残念なのは、20年前のアイデアでは、活用後にマクロ相分離を生じさせて各エレメントに分解し再び原料とするプロセスが提案されているが、この実用性についてリサイクル実験をしたところマクロ相分離させても回収は困難だった。
高分子は機能を上げるためにどうしても複合化が必要になる。ゆえに20年前のアイデアのように無理に各エレメントに分別することを考えず、それを機能要素としてさらにブレンドして活用するアイデアの方がリサイクルしやすいのではないか、と考えた。
それを念頭に置き、再生PET樹脂の作戦1では、5種以上のポリマーを用いた多成分ポリマーアロイで材料を設計している。作戦2は月並みのPC/PETであり、これがリサイクルされて他のPC系のポリマーアロイとブレンドされても、作戦1を使えば、樹脂の性能を落とすことなくリサイクルできる。
すなわち、この時思い描いていたのは、高分子精密制御プロジェクトで提案されていたマクロ相分離による各ユニット分離手法ではなく、ブレンドしても機能が生きるリサイクル技術であり、PC/PETをPETやその他のリサイクル材とブレンドしても機能が保存される技術である。
当時時間が無かったので十分な研究を行わず、まずモノを作ることに専念したので、退職した翌年に社長賞を受賞したと連絡が入った。10年間その後の報告を待ったが、音沙汰なしなので環境問題に貢献できるよう公開させていただいた。
カテゴリー : 一般 高分子
pagetop
人類の歴史に較べれば人工高分子の歴史は大変短い。その短い期間の間に起きている環境問題である。高分子以外のセラミックスや金属の方が人工材料としての歴史が長いのに高分子だけが大問題になっているような雰囲気だ。
これをゴミ問題として捉えたときに、実は金属材料も社会問題として騒がれた時代がある。空き缶が街にあふれだした高度経済成長の時である。当時空き缶は鉄でできていたが、空き缶を回収リサイクルするならば、高価なアルミ缶でも経済性の障壁が下がる、ということでアルミ缶が登場している。
すなわち、金属アルミニウムは鉱物の電気分解から製造されるので、材料価格の大半は電気代である。ゆえにリサイクルするとこの電気代に相当する価格が無くなるので鉄缶とほぼ同じ価格かあるいは軽量な分だけ安くなる。すなわちアルミ缶はリサイクルすればするほど鉄缶よりも価格的に有利になるので急速に普及したのである。
同様の視点で、電子機器のマグネシウム外装も普及した経緯があり、大局的にみると人工高分子についてリサイクルの視点が欠けていたために問題が発生している、と見ることもできる。これはプラスチック材料の大半がアルミニウムやマグネシウムよりも安かったためにリサイクルよりも廃棄が進んだからである。
30年ほど前からプラスチックスの環境問題が騒がれはじめ生分解性プラスチックスが注目されている。また、LCAの観点から天然高分子も注目されているが、材料の歴史から考察すると、プラスチックの環境問題はリサイクルの視点でまず考えるべき問題のように思われる。すなわち、3Rの視点でまず技術開発を進める必要がある。
(注)天然高分子=環境問題の解決とならない理由は、古代の遺物に天然高分子がそのまま残っている点に着眼すると理解できる。例えばミイラの布地は天然高分子である。またアイスマンの身に着けていた皮革も朽ちず残っていた。高分子に限らず、人工物を何も考えずポイ捨てすれば環境問題につながる、という意識で生活すべき時代だと思う。
カテゴリー : 一般 高分子
pagetop
「組織で働く」とは、いかに他のメンバーに対して気配りするのか、と同義だとサラリーマンを経験して学んだ。管理者が優秀であれば、メンバーはそのような気配り能力が無くても組織はうまく機能してゆく。
マネージメントとはそのために考え出された技術である。マネージメントを人間にあらかじめ備わっている能力だと誤解している人がいるが、これは学ばなければ身につかないし、組織で働く経験、すなわち実戦を経験しなければ理解できない部分もある。
高分子のコンパウンディングは、添加剤に対して気配りなどしない高分子を如何にマネージメントしたらよいのか、と考えるとうまくゆく場合が多い。必ずうまくゆくとまで言い切らないのは、当方の経験知だからである。
ところが混練の教科書にはこのようなことが書かれていない。物質を分散するためにどのようなスクリュー設計が、あるいは混練条件があるのか、などといった説明になっている。
だから、同じような混練条件で添加剤を分散していても、あるお客さんでは品質問題が起きているのに、他のお客さんでは起きていない、という一見不思議なことが市場で発生する。
あるいは、ある高分子では問題が起きていなかったが、他の高分子では問題が発生した、とか、従来のロットでは問題が無かったが、新しいロットで問題が発生した、といったことまで起きる。
これらは、高分子に気配りすれば、納得がゆく場合が多い。高分子にしてみれば、添加剤は異物である。できれば仲間と肌を合わせていたいのに、奇妙な物質を機械で押しつけられても排除したくなる。
添加剤の中には高分子とくっついていると気持ちの良いものもあるかもしれないが、大抵の高分子は仲間とくっついていたほうが気持ちが安定する。その結果、混練機から押し出された高分子は添加剤を排除したいと思いながら冷えてゆく。
冷えてゆくときにハイな気分の高分子から気力のない高分子まで様々な気分の集合体へとコンパウンドは変化してゆく。ガラス転移以下となっても体の一部が興奮してどうしようもない高分子がいるので部分自由体積なる空間ができる。
人間でさえどんなに寄り添おうとしても完全な理解はできないように、高分子についても完全にその気持ちを理解できるわけではない。しかし、「高分子を加工する」ではなく「加工される高分子」を見つめることでカオス混合装置を発明している。
科学的ではないが、それでも大手一流コンパウンドメーカーのコンパウンドよりも性能のとびぬけたコンパウンド開発に成功している。品質問題に悩まれている技術者は、もう少し謙虚になって高分子の気持ちを考えてみてはいかが。
カテゴリー : 一般 高分子
pagetop
1980年代の材料科学のイノベーション、セラミックスフィーバーから40年近く経ちました。今デジタル化と脱炭素社会という二極化で材料分野のイノベーションが求められています。
セラミックスフィーバーでは、セラミックス材料という明確なオブジェクトが存在し、のちにナノテクの潮流を引き起こす超微粒子化とそのプロセシング開発という明確な課題が見えていました。
今回のイノベーションでは、デジタル化と脱炭素化という二大潮流が具体的なゴールを示さないままうねりながら押し寄せており、何もしなければ、誰も見たことのない未来へ流されてしまいます。
すなわち、潮流は明確ですが具体的なオブジェクトや課題が不透明です。すでにガブリエルにより「不確実性の時代のはじまり」とか、ドラッカーの遺作「ネクストソサエティー」には「誰も見たことのない世界が始まる」とか警鐘を聴かされましたが、答えは見えてきませんでした。
弊社では電子出版というサービスで提案を行いましたが大失敗しまして10年が経過しました。改めて事業を定義しなおすとともに新たな事業を計画中です。
現代の潮流の一つに見えない課題をビッグデータを活用して具体化し、そのソリューションを提供するビジネスを生み出す流れがあります。また材料分野に限れば、マテリアルインフォマティクスというデータマイニングが行われています。
まず、この潮流に応えるためにどこでも誰でも使える多変量解析のプログラムを弊社サイトで提供させていただきます。さらに順次このプログラムを活用し、どのように新しい企画やサービスを考えたらよいのか、事例をご紹介してゆきます。ご期待ください。
カテゴリー : 一般 電子出版 電気/電子材料 高分子
pagetop
ホスファゼンは量産使用であれば2000円/kg前後である。中国で樹脂生産を行うならば、それ以下で入手可能だ。
しかし、中国でBDP類似難燃剤が400円/kgで入手できることを考慮するとリン単価として捉えたときに高価な難燃剤となる。
しかし、リン系難燃剤とホスファゼンを組み合わせて使用すれば、安価なリン系難燃剤だけで材料設計するよりも品質が高く経済的な難燃性樹脂を開発できる。
これも当方のセミナーでデータを公開しているが、タグチメソッドのSN比でホスファゼン併用系は、リン酸エステル系難燃剤単独使用よりも3dBの改善効果がある。
3dBとは1000倍である。タグチメソッドによらなくてもこの結果を確認することができ、組み合わせることにより使用量を減らすことが可能となるので、樹脂の力学物性にも好ましい効果を期待できる。
ただし、これを実際に実現しようとすると幾つか細かいノウハウを獲得する必要がある。これも当方のセミナーで公開しているが、関心のあるかたは問い合わせていただきたい。弊社からホスファゼンをご購入の方にはそのノウハウも伝授いたします。
カテゴリー : 一般 電気/電子材料 高分子
pagetop