活動報告

新着記事

カテゴリー

キーワード検索

2019.05/07 ゴムと樹脂

ゴムと樹脂の違いは、と突然尋ねられた時にどのように答えるのか。科学的には、室温の状態と高分子のガラス転移点から回答することになる。それではエラストマーとゴムの違いは?と聞かれれば、ゴムはエラストマーに含まれる、としか答えようがない。

 

ところが、ゴムについては、JISや日本税関の定義があって、単純に科学的な回答で説明していると間違っていると言われかねない。いずれの定義にもガラス転移点の話など出てこない。

 

熱可塑性エラストマーを想定するとJISや日本税関の定義が妥当な定義のように見えてくる。しかし、実用性を考慮しない場合にはJISや日本税関の定義から外れるゴムも存在するからややこしい。

 

JISや日本税関の定義から外れたゴムなど経済的な価値が無いから実害は生じないが、それぞれの分野で定義が異なることで頭の中が混乱する人も出てくるだろう。

 

朝、眠い目をこすりながら書いていてもすっきりしない。長い連休明けの話題にはこのような少し刺激的な話を考えたほうが今日一日の仕事のためになる、と書き始めたが、収拾がつかなくなったのでキーボードを片付けた。

カテゴリー : 高分子

pagetop

2019.04/26 無機高分子の合成

有機合成化学は1970年代にコーリー博士の逆合成という概念が提案され、そのデザイン手法がコンピューターのアルゴリズムで取り扱われるようになった。さらに、有機金属化合物の合成研究が発展した20世紀に、その学問体系がほぼ整備された。

 

有機金属化合物では、低分子化合物だけでなく高分子化合物も開発された。例えばフェロセンポリマーという物質も合成されている。有機ケイ素高分子も多数開発され、東北大故矢島先生により有機ケイ素高分子からSiC繊維を製造する技術も1970年代に開発されている。

 

当方が発明したフェノール樹脂とポリエチルシリケートとのリアクティブブレンドによる高純度SiC合成法は、この矢島先生のご研究から6年後に成功している。矢島先生のご研究はポリジメチルシランを炭素繊維と同様の方法で熱処理する製造法だが、当方の方法は前駆体であるポリマーアロイを製造するリアクティブブレンド技術にその特徴がある。

 

これは、科学的に考えていては開発できない方法で、頭がよければ誰でもできるわけではない技術開発手法で合成された前駆体だから科学者には少し難易度が高い。そもそも混合プロセス段階はフローリーハギンズ理論によりその現象が否定されるような前駆体である。科学と技術とはどこが異なるのか、という命題について知りたいなら、この前駆体の合成プロセスをよく考察していただければわかりやすいと思う。

 

論理のち密さが重要という理由で、科学は頭の良い人でなければそのブレークスルーが難しいが、技術は多少頭が悪くともその開発が可能だ。ちなみに人類による技術開発の活動は4000年以上昔から行われている。中国4000年の歴史が日本に影響を与えたが、それよりもはるか昔から技術開発は人類の日々の生活の営みとして行われてきた。

 

日々の営みを自然とうまく調和する努力のできる人類が技術を開発してきた。この意味では、頭の良し悪しよりも、性格の素直さが技術者には重要だと思っている。

 

技術開発の歴史を眺めたときに、現代の有機合成技術者を高度な研究者集団としてみなすのは、もはや時代遅れである。1980年代からすでに有機合成技術者は知識労働者の一人になっている。なぜなら21世紀にはいってから有機合成分野において新たな概念は生まれていない。無機高分子合成化学に至っては無機高分子研究会設立以降ノーベル賞級の新しい概念は生まれていない。

カテゴリー : 高分子

pagetop

2019.04/24 高分子の誘電率

高分子の誘電率や屈折率は、密度の影響を受ける。すなわち以前も書いたが、制御が難しい自由体積の量にも影響をうける。これがどの程度影響を受けるのかは、密度と誘電率とのグラフを作成して確認する以外にない。

 

面白いのが、有効数字三桁程度ではきれいに再現性の良いグラフとなるが、4桁になると難しくなってくる高分子も存在する。おそらく3桁でも制御するのが難しい高分子もあるかもしれないが、当方の経験では3桁程度は何とか制御できた。

 

これがフィラーが入ってくるとさらに難しくなってくる。また困るのは、コンパウンド段階の評価と成形体の評価がずれてくる場合である。それぞれのばらつき具合が同じであればよいが、その偏差そのものがロットごとにばらつくので管理にノウハウが必要になってくる。

 

中間転写ベルト用コンパウンドを子会社で立ち上げたときに、押出成形でできるベルトの抵抗をペレットの誘電率で管理する技術を開発した。この時は、直流で計測されるベルトの表面比抵抗との対応をペレット段階の電気抵抗で管理できるのか、が大きな問題となったのでインピーダンスを持ち出したのだ。

 

ただ、インピーダンスでは少し電気をかじったことがある人が、交流の抵抗と対応をみてもよいのか、といいだした。そこでペレットの誘電率を管理することにした。

 

誘電率とベルトの抵抗がどのような機構で相関するのか、という質問も出たが、実験データでこのような関係にあるから管理可能と説明している。なんでも科学的に説明しないと納得しない人が多いのは困る。

 

科学がいくら進歩しても、人間が自然界を完璧に管理できるわけではない。当方にとって大切なことは、ペレットの製造ばらつきをどのように検出して管理してゆくのか、という問題である。

 

この時の誘電率は空隙法で計測しているが、有効数字は二けたであった。たった有効数字二桁でベルトの抵抗管理ができた。これはパーコレーション転移の閾値近傍における管理だったので、カーボン量が1%もばらつくだけで、誘電率が3割ほど変化してくれたから管理パラメーターとして使用できた。

 

ただこの管理手法は、ペレットが狙ったとおりの高次構造で生産されていることが大前提になる。もし狙った高次構造と異なったら、おそらくペレットの誘電率とベルトの表面比抵抗とは異なる相関、あるいは無関係になるかもしれない心配があった。

 

そこで粘弾性手法を用いて高次構造の管理を行ったのだが、この粘弾性データが、ベルトの表面比抵抗の生産ばらつきと相関するという予期せぬ結果が得られたのはびっくりした。このことは後日またここで書きたい。今日はここまで。

カテゴリー : 電気/電子材料 高分子

pagetop

2019.04/19 シリコン樹脂(レジン)

シリコーン類は、金属ケイ素を原料にしてジメチルシラン類を合成し、それらを原料にして様々な化合物が合成されている。SiC繊維の原料となるシランポリマーの主鎖はSiだがシリコーンポリマーの主鎖はらせん構造をとる柔軟なSiO結合だ。

 

だから、線状シリコーンポリマーはゴム弾性を示す。ややこしいのは架橋密度が上がり、ゴム弾性を示さない物質はシリコーンレジン(樹脂)と呼ばれていることだ。

 

C-C結合を主鎖に持つ一般の有機ポリマーの樹脂とはTgが室温より高い物質が樹脂と呼ばれているから、これはシリコーンゴムの架橋密度の高い物質と呼んだ方が分かりやすい。

 

しかし、エラストマーとしても用いられるポリエチレンが樹脂と呼ばれたりしているから、これらの物質を眺めると、樹脂とかレジンと言う呼称が室温において弾性を示すかどうかという視点がわかりやすいことに気づく。

 

ところが、熱可塑性エラストマー、TPEという物質が存在したりするので、この議論をますます難しくする。そもそも、レジンとエラストマーを同じ土俵で定義されていないのではないかと思えてくる。

 

技術者の間でもこの感覚が異なるから、高分子と言うものが難しく見えてくる。エラストマーと感じた物質をレジンと言われたりすると、当方は未だに不気味になる。

 

これは地下鉄の電車をどこから入れた、という三球照代の漫才ネタと同じではない。学会が整備しなければいけない言葉の問題だ。

 

さて、言葉の問題は漫才同様に結論が出にくいが、シリコーンレジンについて有機置換基の量が少なくなると可撓性が低くなり、硬度も高くなることが経験的にわかっている。すなわち、硬いシリコーンレジンを製造したいなら有機置換基を少なくすればよい。

 

また、有機置換基の芳香環の割合が増えると、可撓性が高くなり、柔らかいシリコーンレジンになる。すなわち置換基の量と芳香環の割合を制御しながら様々なシリコーンレジンが合成されている。

 

合成法は、有機ポリマーよりも簡単で分かりやすいが、ここに物性コントロールをするときの落とし穴がある。すなわち、可撓性が高く柔らかいシリコーンレジンを設計したつもりだが割れやすかったりする。

 

この問題の答えはここで書かない。ご興味のある方は弊社に相談して欲しい。本日の内容だけでも勘の良い人ならばすぐに理解できる。無機高分子研究会というのがあるが本来こうした問題をもっと多く議論してくれたなら面白いのだが。

カテゴリー : 電気/電子材料 高分子

pagetop

2019.04/18 シリコーン

昨年台湾ITRIから講演依頼を受けてから、すでに3回シリコーンに関して講演を行った。ケイ素化合物の反応を初めて扱ったのは大学4年の時で、トリメチルシリルメチルグリニア試薬を合成し、ジケテンを開環する反応である。

 

グリニヤ試薬は極めて反応性が高いので-20℃以下に冷却してエーテル溶媒中で行う。少し危険な実験で、設備が整った実験室でなければ行えない反応である。大学院に進学後は、ケイ素ではなく3塩化リンを相手に合成実験を行ったが、こちらはやや反応がマイルドで室温で行えた。

 

さて、シリコーンを事業としている会社の大手は、何らかのケイ素源を持っている。例えばこの分野で日本最大の信越化学は、シリコーンウェハーもその事業の一つとしており、低コストでシリコーン類を製造可能なはずだが、シリコーン類は、他の高分子に比較し、高価である。

 

昔からシリコーンポリマーが高価格だったことは問題となっており、水ガラスから新たなシリコーンポリマーを合成する試みは古くからおこなわれてきた。40年ほど前、大阪工業試験場椎原先生は水ガラスからシリコーンポリマーの様なエラストマーを合成し、新聞発表され関係者を驚かせた。

 

しかし、その時の水ガラスエラストマーは、水を含んでいることで弾性体となっていたので、耐久性のないエラストマーだった。すなわち乾燥雰囲気化に長時間放置するとゲル化し、弾性を示さなくなった。しかしこの実験で多くの人が水ガラスの中のシロキサンがポリマーであることを十分理解することができた。

 

ゴム会社に入社後、この椎原先生の実験が気になって、水ガラスからケイ酸ポリマーを抽出する実験を行っている。THF-ジオキサン混合溶媒でケイ酸ポリマーを抽出したのだが、すばやく処理を行わないとゲルが沈殿し、扱いにくかった。

 

そこで、フェノール樹脂との複合化を行ったところ、電顕でシリカ粒子が観察されない有機無機ハイブリッドを製造することができた。ただ、Na不純物などが残っており、水ガラスを使用していては高純度化が難しい、と判断した。

 

そこでこの発明はTEOSとフェノール樹脂との反応に展開されてゆくのだが、今度はフェノール樹脂とTEOSとを均一に混合できない問題が生じた。ここから先はすでにこの欄で書いているので省略するが、いずれの話も特許出願されているが、現在の特許庁のデータベースでは、このころの特許を収録していないので調べることができない。

カテゴリー : 高分子

pagetop

2019.04/15 フィルムのインピーダンス(2)

単一組成のフィルムのインピーダンスを計測している限りにおいては面白い計測ではない。しかし、表面処理されたフィルムや成膜に失敗したフィルムなどを計測すると途端に面白いデータが得られ始める。

 

主に低周波領域で周波数分散に異常が観察されるようになる。ここでは書きたくないような面白い現象も観測されるが、その中でパーコレーションとの関係を示すデータについて経験談を書く。

 

酸化第二スズゾル(以下スズゾル)をPETフィルムにバインダーとともに塗布すると、パーコレーション転移の閾値以上の添加量で帯電防止層ができる。

 

面白いのは、厚みが1μmもない帯電防止層の表面比抵抗が10の10乗から11乗程度の高抵抗であってもタバコの灰付着テストに合格する。このとき、スズゾルの体積分率とインピーダンスの変化の関係を整理すると面白い。ここであまり書きたくないが、すでに国際会議等で発表した内容もあるのでそれについて説明する。

 

インピーダンスの絶対値の周波数依存性データで低周波領域に異常分散が現れ、それがスズゾルの体積分率と相関する動きをするのだ。すなわち、インピーダンスの絶対値を用いるとパーコレーション転移の閾値を容易に検出できる。

 

 

カテゴリー : 連載 電気/電子材料 高分子

pagetop

2019.04/06 負の誘電率(3)

負の誘電率の材料が透明ならば負の屈折率となるはずだ。また、中間転写ベルトの開発で見つけた現象から、高分子の変性で負の屈折率という機能を実現できる可能性がある。

 

今から30年ほど前の写真会社へ転職したての頃に福井大学工学部で客員教授を拝命したが、そのときパーコレーション転移とインピーダンスの低周波数領域における異常分散について研究している。

 

その時に評価したサンプルにも負の誘電率を示すものが見つかったが、研究対象から外している。研究の目的がたばこの廃付着テストに関する研究だったためである。

 

さかのぼること40年前の1980年代にSiCウィスカーを2000℃以上に加熱しカーボンナノチューブを合成している。ただこの時はカーボンナノチューブを合成するのが目的ではなくSiCウィスカーの線膨張率を測定するためだった。

 

研究目的とはずれた珍現象や新現象はこのように研究目的と異なる場合に除外される。ノーベル賞でも取る目的ならば鵜の目鷹の目で新現象を追い求めるが、技術者が欲しいのは新しい機能である。

 

今ある目的のためにこの負の誘電率という機能に着目し趣味の研究を開始したが、つまらない結果しか出ていない。いざその目的で制御して現象を起こそうとすると難しい。久しぶりに眠れない日が続くが、年齢を考えると無理もできない。

 

若い時ならば過重労働を厭わず、無茶な仕事を行っていたが、今は眠くなったら寝る、という生活である。これが老いだと自覚したのだが、昔でもつまらない会議の時には居眠りをしていたので、あながち老いのせいにはできないかもしれない、と若い時の業務姿勢を反省している。

カテゴリー : 電気/電子材料 高分子

pagetop

2019.04/05 自動車産業

今年はトヨタのベア非公開が話題になり、自動車産業は100年に1度の大変革期と言われている。衆知のように自動車エンジンがモーターに切り替わる未来が具体的に見えてきたからだ。そこで昨日書いたようにトヨタはHV特許無償提供という思い切った戦略をとった。

 

EVでは、複雑なエンジンを組み上げる技術力が無くても自動車を製造できるので、多くの異種産業からの参入が今後予想される。それだけではない。

 

ガソリンスタンドも今の様な大規模のスタンドは不要になる可能性があり、それこそセブンイレブンなどのコンビニの駐車場でも充電スタンドを設置可能で、自動車会社よりもガソリン業界はもっと深刻である。

 

この10年ソーラーパネルを設置する家庭が増えたが、休耕田を利用した発電事業が再度見直される可能性もあり、自動車産業以外の周辺のビジネスチャンスが広がっている。

 

当方が生きている間にガソリンエンジンの車が無くなる可能性も出てきて、今誰も気がついていない新規事業ネタを考えるのは楽しいことである。

 

最近のモーターショーでは、自動車がインターネットとつながることがテーマとなり、自動運転までその中に取り込まれていった。これらの動きは、ガソリンのいらない車でも状況は変わらないが、充電ステーションの問題は、充電規格にとどまらず、考えなければいけない課題が多い。

 

例えば10台の車へ一度にガソリンを給油するときにガソリンスタンド外への影響は無いが、一か所で10台同時に充電した場合には、どのようになるのか。また、確実に今よりも必要な電力は増える。現在の発電設備で間に合うのかどうか深刻な問題である。

 

一方で、電気自動車の普及は、ニュースになっているほど早く進まない、という見方も存在する。また、トヨタのように進んでほしくない、とあからさまに表明しているメーカーも存在する。

 

ゆえに、当方はどちらかと言えば、一般に言われている電気自動車の普及スピードに対して懐疑的な見方をしている。

 

確かに化石燃料の消費は抑制しなければいけないが、火力発電が未だ主流の時代であれば、HV車が現実的である。だからと言ってHVが主流になるとは考えにくい。

 

燃料電池という可能性も考えられ、中国では燃料電池車に対する関心が急速に高まっている。恐らく今世紀は自動車のエネルギーが多様化する時代となるのではないか。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2019.04/03 負の誘電率(2)

連続体モデルの理論解析からプラス電荷とマイナス電荷のズレ(分極)が単一方向にそろっている状態であれば負の誘電率が出現するといわれているが、この場合に分極ドメイン構造のほうが安定なので負の誘電率発現が抑制されるという。

 

ところがこの解析結果で分極ドメイン構造が生じなければ、あるいは何らかの理由で分極ドメインが不安定になったなら、負の誘電率が現れることになる。

 

例えば、導電体や半導体のドメインが生じた場合には電子の拡散速度というものは早いので負の誘電率が現れる可能性がある。

 

実用化されているPPS製中間転写ベルトの誘電率を測定すると正であったが、実用化過程で得られたベルトの中には負の誘電率を示すものが存在した。

 

用いている導電性カーボンはすべて同じロットの製品であり、異なるのはマトリックスの配合だけである。すなわちPPSへ添加されたポリマーの種類や混練条件で負の誘電率を示すベルトが得られたことを示している。

 

誘電率が正のパラメーターであることは電磁気学の教科書に書かれているが、計測でこのような負の誘電率が現れる現象については、現代のホットな話題の一つだ。

 

負の誘電率が存在すれば、負の屈折率も可能性があり、世間では光学分野の関心が高いようだ。永らく屈折率を正として扱い、光学の体系が作られてきたが、その再構築を迫る現象のためだからだ。

 

 

カテゴリー : 電気/電子材料 高分子

pagetop

2019.04/02 負の誘電率(1)

昨日この話題を書こうとカレンダーを見たらエイプリルフールなのでやめた。新元号の発表はエイプリルフールと関係なく行われているが、誰もエイプリルフールだと騒がない。

 

すでにスーパーコンピュータにより強誘電体薄膜が負の誘電率を示すことが、最近シミュレートされている。

 

誘電率は正のパラメーターとなるのが普通であるが、30年ほど前に電気粘性流体の開発を担当した時に負の誘電率が測定されてびっくりした経験がある。

 

導電性微粒子にシリカの超微粒子を傾斜組成で分布させて表面から内部にかけて10の11乗Ωから10の4乗Ωまで体積固有抵抗の値を変位させた粒子や、

 

超微粒子の粘土鉱物の層間にグラファイトを挿入し、それを分散した微粒子、すなわちあたかもナノオーダーのコンデンサーが分散したような微粒子を合成して測定した時である。

 

誘電率は正だから測定法がおかしいのだろう、と周囲の研究者に笑われたのでそのままにしていた。しかし、転職した会社で中間転写ベルトの開発を行っていた時に、また負の誘電率と遭遇することになった。

 

世間でもメタマテリアルで誘電率が負になる、ということで2000年以降指数関数的にそのような論文が増加しているのでおどろかず、じっくりと頭の中で温めてきた。

カテゴリー : 電気/電子材料 高分子

pagetop