活動報告

新着記事

カテゴリー

キーワード検索

2013.12/29 未来の材料設計

機能性低分子材料のコンピューターによる材料設計は、40年前コーリーらが逆合成のコンセプトで分子の合成ロジックを完成し、コンピューター上で効率的な合成ルートを評価したことに始まる。そして現代ではパーソナルコンピューターでその機能をシミュレーション可能なレベルまで到達している。

 

また、無機材料も固体物理の進歩によりコンピューターでその機能をシミュレーション可能なレベルに到達している。しかし、高分子については10年ほど前に元東大教授土井先生らのOCTAが完成したが、現在シミュレーターのテスト段階という状況である。

 

テスト段階であるが、例えばSUSHIのように現実系に適用できるシミュレーターもできている。ポリマーアロイの材料設計についてはSUSHIと経験知を併用するとコンピューター上である程度の実験が可能となる。OCTAが機能性低分子材料の設計のように使われるまでまだまだ時間がかかりそうであるが、原因は高分子物理の遅れにある。

 

高分子物理については、元東大教授西先生らのグループが地道に行っている分子1本のレオロジーの研究が重要である。レオロジーについては40年前の状況と現在では大きく変わったにもかかわらず、その変化が産業界に十分認知されていないように思う。

 

昔はあるスケールの大きさで高分子を眺め、計測されたレオロジーデータから高分子物性を議論していたのが、現在は分子一本から観測されるレオロジーデータを考察し高分子物性を議論しようとしている。この実験は気の遠くなるような実験で一つのデータを見る限り遊んでいるようにしか見えない問題がある。

 

しかし、このデータが必要な実務の現場が多数あるはずで、産業界はもっとこの研究に注目し、現場の情報を提供すべきであろう。実務の現場で得られたデータとこの研究が結びついたときに分子1本からメソフェーズ領域、そして目視可能なマクロ領域まで高分子物性の理解が連続的に進む。その結果高分子の材料設計がモノマーから自由に可能となる。

 

このコンセプトをある程度コンピューター上で実現しようとしたのがOCTAのように思われる。ここで「思われる」としたのは門外漢としてOCTAを眺めてきたからである。しかし退職後OCTAを勉強してみると高分子物理の向かうべき方向が示されていると考えるようになった。すなわちコンピューターのプログラムがあたかも高分子物理の哲学のようでもある。細部のプログラムを理解できていないのでオペレーションからの推定になるが、土井先生がOCTAで目指されたのは高分子材料設計における設計図の概念かもしれない。

 

(注)OCTAは名古屋で生まれたので名古屋の市のマーク「丸八」(布団屋ではない)から由来している。

 

カテゴリー : 一般 電気/電子材料 高分子

pagetop