今年のフィギュアスケート選手権グランプリファイナルはコロナ禍のため中止となった。羽生選手は怪我のためグランプリシリーズに出られなかったので、グランプリファイナルにも出場はかなわなかったが、宇野選手が絶好調であり、フィギュアスケートファンは残念に感じているのかもしれない。
当方は渡部絵美選手の時代からフィギュアスケート観戦を楽しんできたが、理由はこの競技ほど才能と言うものを強く感じさせるスポーツ競技は無いと感じているからである。
もちろんどのようなスポーツ選手でも一流になるには才能や恵まれた肉体が必要であるが、フィギュアスケートでは運動能力以外に表現力と言う抽象的な感性の領域の能力が求められており、わずかながらでもそれが無ければ成立しないスポーツである。
例えば、難易度の高いジャンプをいくつも繰り出して点を稼ごうとしてもその組み合わせには制限がかけられており、表現力の力量が勝敗に影響するようになっている。
フィギュアスケートはスポーツ競技の中でもこの表現力という才能の有無に強く影響を受ける力量の差が勝敗を大きく左右する。本田真凛選手が順位を落としても注目され続けているのは、単にかわいいだけではなくこの表現力の才能を皆が認めているからだろう。
凡人が練習を繰り返して到達できるレベルを超えた能力を発揮できる人は、そこにそのレベルを越えさせる天賦の才能があるためだが、フィギュアスケートの表現力については凡人の誰もが才能が無ければレベルを高く保つのが難しい能力だと認めるだろう、
難易度の高い技を組み合わせた演技の中で、曲の世界を表現するためには、演技を失敗しないように技へ能力を集中していても自然にできるような天賦の才能が無ければ不可能である。
林芳正外相がG7の夕食会でビートルズ「イマジン」を演奏されたという。大臣はヒマジンだから、という駄洒落を言うつもりは無いが、練習する時間をとれるだけの仕事なのだと感じてしまうのは当方だけだろうか。
第三者に披露しようとなると楽器の演奏の場合、才能だけでは難しくそれなりの練習量が求められる。それが分かっているのでこのような要職にある方がプロ並みの演奏を披露した場合には心配になってくる。
まさか、大臣の能力は無いがピアノの才能は優れているとアピールしたかったわけではないだろう。ところが座興とは感じられない演奏だったという。
趣味を披露するときには注意を要する。第三者に下手なヨコ好きと思わせるレベルの表現が愛嬌となる。また、それを聞かされる方は我慢という表現で親密さをアピールできるので、多少下手な方がこのような場としてふさわしい。
カテゴリー : 一般
pagetop
N社F100の裏蓋フックは、クリープ破壊で壊れた可能性が高い。それはフラクトグラフィーにより、明らかだった。フラクトグラフィーとは、御巣鷹山の飛行機事故の裁判でも墜落原因を特定するために使われた科学的方法である。
御巣鷹山の飛行機事故では、重要部品の圧力隔壁が壊れこれが飛行機の制御系を壊し、制御不能となった飛行機は御巣鷹山の峰に衝突した、という原因が解明されている。
圧力隔壁が壊れた原因について解明するためにフラクトグラフィーが使われ、墜落した飛行機がかつて羽田で尻もち事故を起こした時の修理方法が悪く、疲労破壊を速めた、というところまで明らかになっている。
フラクトグラフィーという手法では破壊した個所の観察が重要で、その破壊した個所に現れる材料特有の模様から、破壊に至る過程を明らかにしてゆく。
N社F100のフックの破断面をD2Hへマクロレンズをつけて接写して、拡大して得られた画像を見たところ、ゆっくりゆっくり破壊が進行したところと急速に破壊が進行したところが連続的につながっていた。
すなわち、最初に何らかの原因で、ピシッとヒビが入り(この時急速に破壊が進行した波面の状態となる)、樹脂はそれを何とか持ちこたえたが、その後クリープでゆっくりゆっくり破壊していった破壊の様子が一つ思い浮かぶ。
しかし、カメラは防湿庫に静置されていたので、最初の破壊原因としてピシッとヒビが入る情景を想像しにくい。それよりも、裏蓋フックには常時それを開けようとするスプリングの負荷がかけられている。この機構ゆえにフックが外れると裏蓋が勢いよく開く。
すなわち、フックに応力が常時かかっていたが樹脂密度が低いためフック全体のクリープ速度が速くなり、わずかに変形して応力集中が起きたところからゆっくりゆっくりとクリープ破壊が進行した。
その後、裏蓋を開けようとするスプリングの強度に持ちこたえられなくなったところで、ピシッと割れた、という破壊機構の方が波面の模様を説明するために妥当性がある。
すなわち、新たに購入したN社フラッグシップD2Hを使用するようになったため、1年以上防湿庫にF100は眠っている状態となった。この眠っていた間に裏蓋フックの樹脂の分子はバネの応力でクリープを起こし、破壊に至ったのである。
おそらくF100を使い続けていたら、もっと早くフックは破壊し、使用条件の悪い使い方か、製品の設計が悪いために破壊したのか原因不明となっていたかもしれない。しかし、1年以上使わずに放置していて壊れたのである。設計ミスか製造時の品質管理ミスかは明らかだった。
ラインに流れる裏蓋フックに関しフックの密度が低いことを見落としていたならば製造側の品質管理ミスである。もし、スペックで決められたバネの応力が強すぎた、あるいはフックの成形体密度について仕様が決められていなかったならば、これは製品設計におけるミスである。
いずれにせよ消費者の責任ではない。1年以上防湿庫に放置していて重要機能部品が勝手に壊れる様な製品を作っていてはだめだ。ますます製品の売れゆきは悪くなる可能性が高いのですぐに弊社に相談してほしい。設計段階からのロバストを高める手法を伝授します。
カテゴリー : 一般 連載 電気/電子材料 高分子
pagetop
ラテックスを塗布し形成された薄膜を観察すると、セラミックスのような粒界が観察されるときがある。そしてその構造のサイズは、ほぼラテックス粒子の大きさと同じである。
このような電子顕微鏡写真を得るためには観察用の良好な剥片が必要だ。さらに四酸化オスミウムなどの染色をしなければいけない。
ラテックスから形成される薄膜は、おそらく皆このような高次構造の薄膜になっているのだろう。面白いのはこの薄膜をさらに熱処理をしてやると粒界が無くなる場合と高次構造が変化しない場合とがある。
ところが薄膜物性を評価してやるとどちらも似ており、玉の性質は消えて紐で現象をとらえた方が説明しやすい場合がほとんどだ。
ならば、樹脂のラテックスとゴムのラテックスを混ぜたらどうなるか(樹脂成分は30wt%未満の配合である)実験してみた。アクリル系ラテックスであれば、このような実験が容易となる。
pHを揃えて合成できる樹脂とゴムのラテックスを別々に合成後、混ぜて塗布液を調整する。この塗布液で薄膜を形成すると、樹脂球がゴム球の中に分散している構造の薄膜となる。これを加熱処理しても観察される構造は変わらない。
おもしろいのはこのように製造された薄膜でも弾性率が上がる。ゴム会社の新入社員テーマで樹脂補強ゴムを製造した時のことを思い出した(この時は樹脂成分は20wt%未満の範囲で実験している)。
この時、目標としたゴールは樹脂の海にゴムの島ができている高次構造だったが、ゴムと樹脂の組み合わせが悪い場合には、ゴムの海の中に樹脂の島が分散している高次構造となった。面白いのはこの高次構造の差は弾性率で比較しても観察されなかったことだ。
弾性率に差は出なかったが、樹脂が島の場合には引張強度に大きな差が現れた。樹脂が海の高次構造の樹脂補強ゴムの方が引張強度はじめ多くの点で優れた物性を示した。
ところが、PETフィルムに樹脂ラテックスとゴムラテックスの混合物を塗布して薄膜を形成すると、樹脂が島構造となっていても、薄膜物性は良好だった。おそらく、樹脂補強ゴムにおける樹脂の島相のサイズが大きく機能していた可能性が高い。
このような現象を考えるときに、紐か玉かどちらが良いのか悩む。およそ妄想の世界でアイデアを練る限界かもしれないが、高分子材料の設計をする場合に科学的に考えているよりも、このようなモデルでイラストを頭に描いて考えた方がアイデアが豊富に出てくる。
こうしたアイデアの大半は科学的ではないが、実現できる場合がある。半導体無端ベルトの押出成形技術を完成させたときのアイデアはこうして生まれている。そしてカオス混合技術を開発することができた。
技術とは必ずしも科学的である必要は無い。それを伝承するためには科学的である方が容易ではあるが、機能を実現するためには非科学的技術であってもロバストさえあればよいのである。科学で固まった頭を少し柔らかくしていただきたい。
カテゴリー : 一般 高分子
pagetop
ラテックスとはゴムや樹脂のコロイド状水分散物である。コロイドとは微小な液滴あるいは粒子がある媒質中に分散している分散系で、粒子の大きさが、約1μmから1nmの範囲にある場合をいう。
コロイド分散系は、分子コロイド、ミセルコロイド、分散コロイドの3種が存在し、コロナウィルスは気相に分散している分散コロイドである。
高分子のツボでは、高分子を組み紐で表現し現象をとらえると分かり易い、と説明してきたが、同じ高分子でもラテックスの扱いは難しい。
それは、例えばラテックスが塗布されて薄膜を形成した場合には組み紐のイメージを想像して現象を考えても良くあてはまるが、塗布前の乳濁液では組み紐よりも玉の扱いで考えやすくなる。
ただ注意しなければいけないのは、親水性部分を持っているラテックスである。その挙動はよくわかっていない。ラテックスにおいて分かり易いのは球の扱いができる場合で、このモデルで説明がつく現象については、難しくても何とか問題解決できる。
しかし、親水性の部分を持ったゴムあるいは樹脂の場合に厄介なのは、組み紐状に広がって分散している場合もあるからである。これはいろいろなラテックスを合成し、このような分子コロイドができたと思われるときにその後のプロセス性が悪かった経験から述べている。
歯切れの悪い書き方になるが、水に分散している状態をうまく分析評価できないのでこのような表現になる。ただ、このような分子コロイドをスピンコーターにたらしてから顕微鏡観察すると球体が見つからないので水中で球状ではない可能性が高いと想像している。
このような場合、10%程度に希釈しても粘度が高いので塗布液として使いにくいが、コーティング液として使えないわけではない。ワイヤーバーを使って無理やりコートすることができ、薄膜の評価も可能である。
ネットで検索して得られるラテックスの説明にはゴムの分散液程度の説明しかないが、乳化重合により樹脂が水に分散したラテックスはじめ様々な高分子重合体のラテックスを頭の中では製造可能である。その中には実際に実用化されたラテックスも多い。
カテゴリー : 一般 高分子
pagetop
英国グラスゴーで10月31日に始まった国連気候変動枠組条約第26回締約国会議(COP26)が11月23日に終了した。今から2030年までの10年間の取り組みが重要と言う意味で「決定的な10年間」、その最初のCOPということで大変注目された。
ところで、 2016年に開かれた通称「ダボス会議」(世界経済フォーラム年次総会)では,「2050年には海の中のプラスチックの重量が魚の重量を越える」という衝撃の予測が提示され,プラスチックスとゴムの廃材で起きている環境問題が世界中でクローズアップされた。
最近では,3RにRefuseを加えた4Rが合言葉となった脱プラスチック運動が世界で起きている。国連が示したSDGsでも廃棄物の発生防止と削減が重点となっており,特に高分子材料についてこれまでの環境対策の見直しが急務である。
来週12月17日金曜日技術情報協会で開催されるWEBセミナーでは,これまでの環境問題の変遷についてわかりやすく解説するとともに,今求められている環境対応技術について,高分子材料に焦点を当てて解説する。
脱プラスチックスが世界の合言葉として叫ばれているが,この潮流の中でどのように環境問題解決に貢献し持続的な企業活動を実現したらよいのか事例とともに提案する。詳細は弊社へお問い合わせください。弊社へお申し込み頂けば割引もございます。
カテゴリー : 学会講習会情報
pagetop
フィルムカメラF100の裏蓋フックはプラスチック製だった。樹脂の材質は不明だが、壊れた断面は、典型的なクリープ破壊の破断面を示していた。
すなわち、その破断面を観察すれば、裏蓋を押し上げるためのスプリング強度が強すぎたためフックのクリープ速度が速くなり、フックが壊れたと理解できる。
ただし、これはフックが常に目標スペック通りにできていた前提の仮説である。
1970年代の低密度ポリエチレンのクリープ速度に関する研究では、密度が0.02大きくなると、クリープ耐性が2倍になるという報告がある。すなわち、密度が大きくなるとクリープ耐性が非常に大きくなるのだ。
これは逆に密度がたった0.02小さくなっただけでクリープ耐性が著しく弱くなることを意味している。スプリング強度が仕様通りだったとすると、F100の樹脂製裏蓋フックの成形体密度がばらつきで小さくなっていた可能性がある。
樹脂の成形体密度は0.02程度のばらつきを生じる場合があり、注意を要する。低密度ポリエチレンのクリープ速度と樹脂強度との関係を調べた研究の動機でもある。
ところで、このF100の裏蓋フックについて高分子材料のツボを読んでいた技術者ならばおそらく密度のばらつきに注意が向いたはずである。
そして組み紐のモデルを思い出し、密度が下がれば著しくクリープ速度が速くなる可能性があるとの想像ができて、品質問題を未然に防げた。
なぜなら密度が低いということは、自由体積の部分が多い樹脂成形体を意味しており、自由体積部分では高分子がぴくぴくと運動している。高分子の運動にレピュテーション運動というのがあるが、これは分子の鎖方向にウナギの如くくねくねと動く運動である。
自由体積が多くなり、レピュテーション運動も活発にでき、そして外力がかかったならどうなるか。紐がずるずるとほどけてゆく様子を頭に描くことができる。クリープ破壊とはこのように進行する。
ただしこれは当方の妄想であり、科学的ではないことを注記しておく。但し、高分子材料開発ではこのような妄想が重要な場面として役に立つケースが多い。品質問題という悪夢と思いたい現実に遭遇するよりも妄想を描きながら慎重に材料開発を進めた方が精神衛生上よい。
後日、中間転写ベルトでは頭に浮かんだ妄想からカオス混合装置を開発した実話を紹介する。科学的な知識では否定証明となってしまう場面でも妄想により掻き立てられた開発欲求により、科学を超越した発明が生まれる可能性が高いのは高分子分野である。
健全な妄想により、悪夢のような現実を起こさないように進むのが、大人の技術開発である。不健全な盲目的科学崇拝では現実否定ばかりしている場合にも、健全な妄想は希望の光を見つけ出す。健全な妄想は健全な精神と誠実で前向きな生き方により生まれる。健全な肉体は、ここぞという勝負時に必要である。
カテゴリー : 一般 連載 電気/電子材料 高分子
pagetop
高分子材料の密度ばらつきを甘く見ると痛い目にあう。以前この欄にN社のフィルムカメラ(F100)裏蓋が、防湿庫に保管中壊れた話を紹介している。フィルムカメラの裏蓋はフィルムの感光を防ぐ重要な機能部品である。
また、F100というカメラはハイアマチュア向けの当時N社を代表するカメラの一台だ。価格も安くない。それが、大切に保管中壊れたのだから頭が真っ白になった。購入してから1年以上経過していたので無料修理も効かない、とサービスセンターで言われた。
すでにデジカメD2Hを使用していたのでF100の修理をあきらめて、高分子の破壊と劣化セミナーで技術が無いために品質問題を起こした事例として使うことにした。裏蓋の壊れたフィルムカメラを修理しないで使う方法としてそれ以外思いつかなかった。
一応修理窓口で無償修理が効かないならセミナーの教材として使ってよいか、と尋ねたら、簡単に承諾が得られた。ゆえに当方の高分子の破壊と劣化セミナーでは無残に壊れたF100が最初に登場する。
フィルムカメラの裏蓋は、高級カメラの場合にボタンを押すとカパッと開くタイプが多い。F100も裏蓋にスプリングがついており、ボタンを押し下げると気持ちよくカパッと半開きになる。
長年P社の一眼レフを使ってきたが、カメラ店でF100を触ってみて、その高級感とデジカメの将来を考え、N社に乗り換えようとしてF100でシステムを揃えなおした。50万円を軽く超えたがN社のデジカメと心中するつもりでF100に乗り換えた。
そして、デジカメはD2Hを購入したわけだが、N社に乗り換え3年でF100の裏蓋が壊れ、無償修理もきかない事態に改めてP社のカメラを見直した。システムを一通りそろえても50万円を越えない懐にやさしいカメラである。
結局現在はN社とP社の両方のデジカメを使用している事態になっている。高分子材料と密度についてF100のフックが壊れた話を書こうとすると、品質保証のサービスが受けられなかった話までさかのぼる。理由は、本来は無償修理すべき問題だと今でも思っているからだ。明日その理由を書く。
カテゴリー : 未分類
pagetop
高分子材料の成形体密度は、金属の成形体密度に比較してばらつきが大きい。これは高分子材料のツボで説明したように部分自由体積の影響であるが、この密度のばらつきの上限と下限を知る方法があるのか実験した経験がある。
配合処方と射出成形条件を一定にして成形体を作ると、密度のばらつきは一定の範囲に入るので、上限と下限を決めることができそうに見える。
ところがコンパウンドのロットが変わると、この上限と下限が狭くなったり広がったりするケースがある。PC/ABSのような多成分のポリマーアロイでこうした現象を観察することができる。
すなわち、同一二軸混練機で同一条件により混練していても原材料が異なるロットを用いると密度のばらつきが影響を受けるということだ。密度のばらつきが影響を受ければ、密度と相関するその他の物性ばらつきも影響を受ける。
例えば、弾性率や誘電率、屈折率などもそのばらつきに密度の影響が現れる。その結果、例えばコンパウンドメーカーが試作段階でコンパウンドの仕様として成形体密度を決めていたならば、ロットアウトとなる場合が出てくる。
ここまで説明すると数年前あるコンパウンドメーカーが仕様書を捏造していた問題を思い出す人がいるかもしれない。そしてその問題では自動車メーカーが一斉に社内の品質検査で問題が無かった、と声明を出す不可思議なことが起きている。ここではこれ以上書かない。もし気になられた方は弊社にご相談ください。
カテゴリー : 一般 高分子
pagetop
高分子材料について組み紐を用いて説明しているが、混練プロセスを考える時にもこのモデルは便利である。高分子材料を混練するときに混練温度をどのように設定するのかは、良好なストランドを引くために重要である。
吐出された樹脂をストランドとして押出しペレット化(ペレタイズ)するプロセス以外に吐出された樹脂をそのままペレットとするプロセスもあるが、ここではストランドとして押し出すプロセスを考えてみる。
混練するときに多くは高分子のTmを基に混練温度が決められるそうで、この温度よりも低い温度で混練すると分子が断裂するので好ましくない、とよく言われている。
当方は、この考え方は現象をよく見ていない人の考え方だと思う。分子の断裂よりも混練機のトルクオーバーを心配しなくてはいけない。しかし、分子の断裂や混練機のトルクオーバーを起こさず、Tm以下の温度でどのように混練するのかは、ここで明確に説明しない。
それは組み紐モデルを眺めておれば気がつくことだからだ。もしアイデアを思い浮かばないならば弊社にご相談いただきたいが、Tm以下で混練してみるとTm付近の混練物とはレオロジー特性の異なるコンパウンドが得られびっくりする。
高分子材料の混練については分配混合と分散混合で説明されているが、40年以上前には溶融高分子に着眼した考察が行われていた。少なくともゴムの混練ではこの視点であり、その時Tm以下でも高分子は流動する前提があった。
乱れた組み紐を眺めていると今にも流動しそうに見えてくる。また、溶融温度以下では乱れたまま混練される姿を想像できる。退職してからこの10年も様々な高分子をコンパウンディングしてきたが、Tm以上の温度で混練した経験は無い。
カテゴリー : 一般 高分子
pagetop
扇風機を2台つけただけの空調服が2万円台の価格で販売されている。これだけの価格ならばペルチェ素子を用いたエアコンジャケットの方が快適である。同じ価格帯で供給可能である。
ただ、問題はペルチェ素子をただつけただけでは、エアコンジャケットとならない。そもそもペルチェ素子だけでは体を冷却することはできない。もう一工夫必要である。
弊社ではこのひと工夫に成功し、ペルチェ素子を用いたエアコンジャケットの試作に成功している。ただ残念なことに開発依頼主の本業がコロナ禍のあおりを受けてエアコンジャケットの事業がペンディングとなった。
特許は3件出しており、そのうち重要な1件については弊社から出願し、出願時審査請求を行っている。開発依頼主からは弊社が新たな事業先を探してよいことになっているので、もしエアコンジャケットの事業を希望される方は弊社へお問い合わせいただきたい。
ちなみに扇風機を2台つけただけの空冷服の問題は、外気を体に直接吹き付ける点である。ペルチェ素子を用いたエアコンジャケットでは、外気と体表面とは遮断されて冷却されることになる。さらに冷却しすぎも無く快適である。
カテゴリー : 未分類
pagetop