「非常に豊かな発想力がある反面、ある種のずさんさがあった。その両極端が一人の中にある」と笹井副センター長は、30過ぎの未熟な研究者の評価を述べた。しかし、データの扱いや実験ノートの書き方については、理系であれば最初の二年間の学生実験で学ぶ。また4年の卒業研究では、講座に配属され、厳しい指導の下に研究の掟を学ぶ、というのが普通の大学である。
40年近く前、学生の間でも評判の大変厳しい先生の指導を受けた。自分から進んでその様な先生を選んだが1年間その先生だけでなく、諸先輩にも叱られてばかりであった。器具の整理整頓だけでなく、洗浄後の状態の検査の仕方まで事細かく躾けられた。雑誌会ではレポートのまとめ方や説明の仕方まで厳しかった。おかげで打たれ強くなった。
大学院に進むことになったが、所属していた講座が廃止されることになり、大学院の2年間は別の講座に進学した。その時も学生に評判の悪い厳しい先生のところを選んだ。当初高校教師になるつもりであったが、技術者の夢を持ったのはその先生のところで学んだ2年間のおかげである。研究テーマではなく短い学生の期間の厳しい指導を求め講座を選んだが、教育費のコストパフォーマンスとして最高だったと思っている。
同じ授業料を支払うのである。一生懸命指導してくれる先生を選んだ方が得ではないか。未熟な研究者で問題になったのは、実験ノートにデータの取り扱いや論文の書き方である。これらは少なくとも大学4年間に当然躾けられていなければならない項目である。コピペをやってはいけない悪事であることは、初年度に学ぶ。なぜ論文に引用文献が書かれているのかも学生実験の時に参考文献とともに学ぶ。そして他人のレポートをコピペした場合には単位を出さない、ということも指導される。40年近く経った今でも、友人の「代返」をして叱られた記憶とともに残っている。
20歳前後というまだ感性の低下していない年頃の時に研究者や技術者になろうとする人は厳しい躾けを受けるべきである。特にデータの扱いや実験装置、器具の扱いについては徹底して躾けられるべきである。発想力や集中力は生まれながらの資質であるが、これらは指導されなければ身につかない事柄である。社会に出る前に早めに躾けられるのが良い。30歳でそれが躾けられていない、というのは異常なことなのである。今回のSTAP細胞の騒動は日本の高等教育の欠陥が原因で起きたのかもしれない。
30歳という年齢は、専門外(注)であっても半導体用高純度SiCのパイロットプラントをゴム会社で立ち上げた年齢である。普通の会社ならば未熟や専門外であることが許される年齢ではない。諸先輩のサポートを受けながら一人前の仕事が求められる年齢である。ちなみにゴム会社では現在でもこの事業は継続されている。
(注)大学4年の卒業研究は、シクラメンの香りの全合成で、大学院2年間のテーマはリン系無機高分子の合成だった。無機材質研究所へ1年半留学し、SiCの結晶や焼結技術について学び、ゴム会社へ戻って速度論の研究を企画し学位を取得した。
カテゴリー : 一般
pagetop
3時間以上の長い会見だった。意地悪な質問にも誠実に回答されていた。おそらく理研の将来の幹部になられてもおかしくない人物という印象である。大きなハプニングも無く、それだけに3時間半近く退屈であったが。とにかく「笹井副センター長」という人物を週刊紙や新聞で報じられた印象で理解していたのを少し恥じた。
質問でもあったが、小保方さんの将来に関しても小保方さんの自己責任で選択できるような配慮をされる方だろうと安心した。STAP細胞の問題は、彼がその存在を否定しなかったことから、理研だけの問題ではなく再生医療の将来に関わる大きな問題となった。是非検証を成功させて頂きたい。本音はどうであろうと現在進められている検証結果は重要である。言葉をかえて同じ内容の質問が繰り返されたが、彼の回答どおりそこに小保方さんが加わらなければいけない、という理由は無いのである。
その他特定研究法人の問題や山中博士と笹井副センター長の関係、STAP細胞の研究は誰の成果といったことはもう無意味である、と感じさせるクールな会見だった。理研の調査結果どおり彼の責任は重いが、昨日の会見で責任の一つを果たしたのではないか。
何か問題が起きたときにその問題にどのように対峙するか、で人物がわかる、と亡父によく言われた。当人の将来に関わる問題では、なかなか中立的な判断で問題に対応することは難しい。ゴム会社でFDを壊される事件が発生したときに判断を間違い、自分で犯人捜しをした後悔は今でも忘れない。
当時、S社とのJVの形式で高純度SiCの事業化が会社方針として決まり体制もできたので、犯人が分かっても仕方がないことだった。よりによってその犯人が犯人であってはいけない人物だったので解決の仕方が難しくなった。犯人探しを行わなければ、半導体用高純度SiCの研究開発をサラリーマン最後まで続けることができたかもしれない。SiCの速度論解析について論文発表し、結晶に関する研究のビジョンまで考えていただけに残念であった。自分が発明し企画から開発まで行い、6年間という死の谷を一人で歩き続けたという自負から、どこかに驕りがあったのだろう。
若い頃を思い出しながら会見を聞いていたが、笹井副センター長のようにクールに問題に対応できること、それが組織活動では大切とつくづく思った。彼は会見ではとりあえず過去の実績にこだわらず、丁寧にわかりやすく記者の質問に応えていたが、所員章をつけて臨んだ覚悟が伝わる会見だった。
カテゴリー : 一般
pagetop
かつて「ガラ携」という言葉を聞いたときにすぐに意味が分からなかった。日本国内で独自進化した携帯電話のことだと息子に説明されて知ったが、写真会社の塗布液調整技術は「ガラ技」と呼んでもよいような状態だった。自己流で勉強してきたので正統派の塗布技術がどのようなものか分からないが、まるで料理を作るがごとくの担当者の手順はあざやかで手際よい。長年伝承され洗練された結果と思われる。
日常扱う素材であれば、この手順で何も問題が生じないが、新しい素材を処方するときに面白い行動となる。すなわち、早めにその素材の工程適正を判断し、工程適正無し、と結論を出すのである。これでは新技術を生み出すことはできない。
工程と同様の調整方法を実験室に持ち込んでいるので、その方法でうまくゆかなければ工程適正無し、と判断し、技術を棄却するのは確かに効率的である。工程の変更は処方の変更よりもお金がかかるのでコスト的にも有利な考え方である。イノベーションが不要であれば、これは良い方法かもしれない。
しかしその結果ライバル会社の技術に差をつけられていることに気がついていない。特許の実施例には塗布工程の詳細は書かれていないが、多数の塗布が難かしい素材で塗布経験をつんできたので、実用化経験は無かったが、実施例に書かれている塗布液が起こす現象のイメージをつかむことができた。
塗布液のレオロジーについても処方の組成で大きく変化する。界面活性剤などでレオロジーを調整できる粘度領域にも限界がある。しかしどうしてもその処方でなければ達成できない薄膜の機能であれば工程を変更する以外に技術手段は無い。その時将来どのような機能が要求されそれを実現するためにはどのような処方液を調製しなければならないのかシナリオを描き、工程をどのように改良してゆくと効率的なのかロードマップを作成した。
カテゴリー : 連載 高分子
pagetop
水を溶媒に用いた塗布液について考えてみる。塗膜を形成するバインダーはラテックスあるいは水に溶解するPVAやゼラチンとなる。ここへ機能性粒子を分散し機能性薄膜にするのだが、ラテックスとゼラチンでは生成する薄膜の高次構造が大きく異なった結果となる。これは塗布技術を経験された方ならば容易に想像がつくだろう。
機能性粒子として導電性粒子を用いた場合では、導電性微粒子が形成するクラスターの構造に依存して薄膜の導電性が変化する。いわゆるパーコレーション転移である。大雑把に現象の違いを述べれば、ラテックスではパーコレーション転移の閾値が微粒子添加量で30vol%以下で生じ、ゼラチンの場合にはそれ以上になる。
しかし、ゼラチンの場合には塗布液の調整方法や塗布時の塗布液温度でこの閾値は大きく変化する。ラテックスの場合にも変化するのだが、ゼラチンの場合には閾値の変化の幅が大きいのである。ざっくりといえば、ゼラチンの場合20vol%から60vol%まで変化させた経験がある。
ラテックスでは、その変化幅はせいぜい10vol%前後であるからこの変化幅の大きさには驚いた。何も考えずゼラチン水溶液を扱うと閾値は40vol%以上となる。すなわちパーコレーション転移が起きにくい。しかし、分散方法その他を制御すると微粒子の添加量がを少なくてもパーコレーション転移が起きるようになるのだ。詳細は問い合わせて頂きたいが、これは塗布液の組成や調整条件で塗膜の高次構造が影響を受けている実例である。
転職したときに驚いたのはこのようなノウハウを担当者が知らなかったことである。ゴム会社でセラミックス材料開発を担当し、半導体用高純度SiC事業を立ち上げたが6年かかった。その6年間に様々な企画を行ったが、機能性セラミックス薄膜の企画では実際に塗布などの実験を行い、塗布工程よりも塗布液の調整方法の奥深さを学んでいた。
塗布工程はknow whoにより外部調達可能だが、塗布液の調整技術は文献にも簡単に書かれているだけである。複雑な機能性薄膜になってくると教科書通りではその実現が難しくなる。伝承された技術など無いから試行錯誤で塗布液の調整を行う事になり、我流ではあるが様々なノウハウを生み出した。写真会社に転職したときにすぐ研究開発に貢献できた背景には、セラミックス薄膜の研究開発で獲得したノウハウがあったからである。
カテゴリー : 連載 電気/電子材料 高分子
pagetop
塗布プロセスと塗布液の関係を一言で論じるのは難しい。20年間の写真会社における開発で様々な塗布プロセスを体験し、そのプロセスに合う塗布液を開発してきた。また、前任者が開発不可能であった塗布液でも開発してきた自信から、塗布プロセスと塗布液の関係について教科書に書かれている内容を疑っている。
塗布プロセスと塗布液の関係において、レオロジーは重要な役割を演じるがそれだけではない。レオロジーをコーターに適合するようにしても「ハジキ」とか「メダマ」とか様々な品質故障との戦いになる。薄膜に導電性が求められた場合には、パーコレーションの問題まで考えなければならない。教科書はレオロジーの側面からの考察であり、レオロジーを合わせても実務では教科書通りにうまくゆかない場合が多い。
塗布液のレオロジーに関して静的に計測するのか動的なのか、またどのような条件で計測するかにより考察が異なってくる。コロイドのレオロジーでは、コロイドの安定性も重要で、コーターにおけるレオロジー変化を粘弾性の装置でうまく捉えているかどうかも問題になってくる。
また、塗布された後の乾燥過程でもレオロジーは、時々刻々と変化する。その変化を正しく粘弾性の計測器で再現することは難しい。乾燥条件によっては「皮張り」という現象が生じたりする。これは、全体が乾燥する前に表面が早くゲル化し、塗布膜内部の溶媒が飛びにくくなる現象だが、これが生じると薄膜の品質を著しく損なう。
教科書通り塗布液のレオロジーを計測しても皮張り現象をうまく捉えることはできない。皮張りを評価する方法ではじめて現象を理解することができる。パーコレーションが関係する塗布膜ではそのための評価を、ハジキが関係する場合には静的な界面評価だけでなく動的な界面評価が必要になってくる。すなわち、塗布技術では、塗布液の変化を捉える幾つかの評価技術が重要で、単に処方とレオロジーの関係で解決がつく問題ではない。処方とレオロジーの関係を研究して理解した。
カテゴリー : 高分子
pagetop
自分の高校生になった息子の入学式に出席するために、高校一年生の担任となった教師が自分の担任の高校を欠席したという珍事がニュースで報じられた。しかし、これは珍事ではなく過去の事例もあったというから驚きである。
勤務先に休暇届を出して息子の入学式に出席する、という行為は悪いことではない。むしろ難しい年頃の子供の教育を思えば奨励されるべき事である。しかし、職業によってはそれが許されない場合がある。今回のニュースはその一例である。その他の事例を考える前に、ここでは一般論では問題とならないが、各論では問題になるケースの存在をわきまえる必要がある点について述べてみたい。
一般論では問題にならない、と書いたが実は、一般論では問題が見えない、と表現すべきかもしれない。問題とは、「あるべき姿」と「現実」との乖離であって、現実だけを見て語られている場合には問題は見えない。逆に理想だけ述べられている場合にも問題は、その理想論の中に隠れてしまう。
職業については、その職業の選択の自由が保障されているが、その職業を選択する責任は個人にある。しかし、職業の「あるべき姿」を決めることができる立場は限られる。民間であれば企業の社長と経営に携わるボードメンバーであるが、公務員の場合にはその職種により職務について「あるべき姿」を決める人物が異なる。例えば公立高校の教師の場合には主権者である国民となる。
私立の場合には民間企業と同様にその学校の創設者になるであろう。しかし、私立でも公共性が高い点に着目すれば国民であるべきだ、という意見があるかもしれない。私立の学校の場合にその役割の人物を特定するためには少し議論が必要かもしれない。但し、公立の場合には、そのサービスを受ける国民であるべきだ。
職業に就く、とはこの職種ごとに決まっている「あるべき姿」をよく理解したうえで職業を選択し、その仕事に従事していることである。すなわち、職種のごとの「あるべき姿」実現のために個人の自由が制約を受けることを理解した上で仕事に従事していなければならない。その前提に立てば、息子の入学式を仕事よりも優先する行為が許される場合と許されない場合があることを教師は理解できるはずである。
職業について理解していない教師の話題ではないが、STAP細胞の中心人物、未熟な研究者の問題は、公的機関の研究者という仕事を理解しないままその職務に就いた不幸な事件という見方もできる。
学生時代に指導担当の教授は、未熟な研究者が研究者に適しているかどうか判断できたはずである。少なくとも会見の内容を聞いている限り、4年生の段階で職業を選択する前にアドバイスされるべき事柄が多数あった。もし会見内容から推定される考え方や価値感であれば未熟な研究者とは優しい表現であり、本来ならば研究職に就いてはいけない人物のように思われる。科学の分野における研究職とは真摯に「真実」と向き合う職業である。それは自分の行為についても同様で厳しい倫理観が要求される。会見内容からはそのような意識の欠如が伝わった。
生徒を教育する役割に就いている方は、生徒の職業の進路を指導するときに、その職業の「あるべき姿」について生徒に教えなければいけない。当方は学生時代に多くの優れた研究者や教師に恵まれ、そのアドバイスに従い選んだ「職業」については満足しているし、またその職業で会社を通じ社会にささやかながら貢献できたと思っている。職業選択において学生時代の教師の役割は重要である。
(注)
昨日の息子の入学式に出席するために担任のクラスの入学式を欠席した教師の件についてニュースの反響は大きく、WEB上にはニュースの見解について賛否両論飛び交っていた。
本件の難しいところは、視点を変えると悪くない、という結論を導ける点。だから、息子のために学校を休んだ教師は何ら処分されていない。処分されていないから許されるのか、というと、そもそもその職業を選んだ覚悟はどうだったのか、という視点で許されない。
これは究極的には個人の価値観の問題に至り、多数決でも結論を出せないが、社会で誰もが気持ちよく生きてゆくという観点に立ったときに「わがまま」はよくない、という意見を認めると、ニュースで報じられた教師は「わがまま」となる。そして「わがまま」がよいか悪いか、となれば大人の我が儘は「悪い」のである。
しかし子供の我が儘については、我が儘は悪い、といっても社会はそれを許している。が、親は我が儘は良くないことだと子供を躾ける。我が儘のままでは社会に迷惑をかける存在になるからである。職業で個人に制約が発生することを認めるのはおかしいことではなく、例えば警察官という職業では、究極の選択において市民の安全が個人の命よりも優先される、と常々元警察官であった父から聞かされていた(だからといって個人の命を軽視してよいと言っているのではない)。
職業に就くには、どのような職業でも覚悟がいる。教師には、社会の「掟」を教育する使命がある。この使命において、「親」としての立場を生徒に見せるのが良いのか、「先生」という職業に真摯に向き合う姿を生徒に見せるのが良いのか、といえば多くの「親」は後者を期待する。
社会の混乱は、当たり前と思っていたことが乱れるところから起きる。それを防ぐために、おかしなことがあると警告を発して「良い」と「悪い」を示すのである。例えばSTAP細胞の騒動は、そのレベルの「良い」と「悪い」が教育過程で躾けされなかった(学位論文をコピペしても悪くない、という価値観を認める教育の)研究者が、世界的発見をしたために起きているのである。
その結果、理研という組織が予算の面で不利になる弊害その他諸々の弊害がその社会で起きて混乱しているのである。理研や学会員以外には影響がないような問題に思えても社会を巻き込んだ騒動になっているのは、科学的発見の大きさだけで無く、社会の常識の根幹を揺るがすような出来事だからである。
博士という学位の価値や国民の税金で研究を行っている研究者が、出張名目で高級ホテルに宿泊したり公的建造物の色を自分好みに塗り替えたり遊び感覚でいい加減に研究を行っている実態、その他ニュースで報じられている内容は、個人の自由でかたづけられる問題ではなく、少しおかしい。
教師が自分の息子の入学式のために担任のクラスの入学式を休むという行為を少しおかしいとみるのか、これを価値観の違いとして認めるのか、少なくとも社会に与える影響を考えたときに、教師があからさまにプライベートを公務より優先する行為は「悪い」と結論ずけたほうが良いように思う。
(注、続き)
その後の教育長の談話で、本件は「良い、悪いではなく、難しい問題」と極めて曖昧な答弁が載せられていた。また、時代が変わった、という意見も多い。本件は、「あるべき姿」を定義づけしない限り、問題は明確にならない。教師という職業をどのように位置づけるかで問題が明確になり、判断を下せる。例えば教師は授業を教えるだけでよい存在と位置づければ、本件はどうでもよい話である。何も悪いことをしていない。しかし、国民は教師に職業観の指導などを期待していないのでしょうか?若い人たちは働く意味をどこで学ぶのでしょうか?
カテゴリー : 一般
pagetop
STAP細胞の騒動を見ていると貢献と自己責任の観点が軽く扱われているように思われる。公的研究機関で科学の研究に携わる人は人類への貢献を第一に考えて頂かなければならない。
このような姿勢は、例えば企業の技術開発現場において、お客様に貢献するために開発を行えと教育される。技術開発の成果がお客様に受け入れられた結果、商品が売れ企業の利益があがり技術者が評価される、と教えられる。また、貢献する過程において自己責任の原則が成熟した大人の常識とも指導される。
今回の騒動は、人類に大きく貢献するかもしれない研究論文に掲載された2点の図について科学の研究における初歩的原則を破ったため起きている。この点は理研の調査結果で単純ミスで到底説明できないと明確にされた、誰もがその調査結果を認める言い訳のできない事実である。野依理事長が未熟な研究者と表現したのは、その表現以外に研究者の罪を許す言葉が見つからなかった優しさからである。野依理事長とは、そのような優しい方である。(注)
もし、貢献と自己責任を意識していたならば、それに値する判断と行動で2点の図を扱わねばならず、研究者の記者会見ではこのあたりについて趣味の手芸を美しく仕上げる程度の説明しかされなかったのは残念である。
その結果、騒動が起きたのだから研究者はまず自己責任の原則に則って反省をしなければいけないが、会見では責任感よりも、200回作成しました、と成果を訴えることに終始していた。それは騒動に対する反省の姿勢というよりも実験結果の正しさを訴え自分の正当性を主張する姿勢に見えて、「誠実さ」を表現しようとしたお詫びの言葉もそのため軽く聞こえた。
パワーポイントから図を取り出したので間違えた、とミスの過程を説明していたが、国民の税金で研究された成果を軽く扱い、データの整理を日常やっていない、と白状している説明となった。貴重な科学データを扱う研究者には納得のいかない説明であり、そこには国民の税金を使い研究を進めている責任感を感じることができなかった。
企業では5Sや見える化が浸透し、開発過程のデータは共有ファイルサーバーで管理されプロジェクトに関わる人間が誰でもアクセスできるようになっているところが多い。リーダーの立場であれば、研究データの管理に細心の注意を払うべきで、それは組織への貢献につながる仕事のはずである。
貢献と自己責任そして自己実現は働く意味において重要な概念だが、企業では新入社員訓練が教育の機会になっている。公的研究機関ではどのように社会人一年生を指導しているのであろう。しかし、これらは学生時代からドラッカーなどの著作を読めば学ぶことができる概念であり、知識人であれば身につけていなければならない常識である。弊社ではかつて入社前のセミナーとしてその知識を公開した。
(注)その後山中博士は30前後の研究者は未熟である、とどこかの席で話されたが、それでは困るのである。今の大学教育のお粗末さを認めているようなものである。かつて鬼軍曹が闊歩し厳しく学生を指導していた時代があり、その時代は毎週行われる研究室の報告会でも厳しいデータの吟味が行われていた。それによりデータの扱いを学んでゆくのである。今は大学までもゆとり教育になったのか?
カテゴリー : 一般
pagetop
フィルムの表面に薄膜を形成して機能性フィルムを製造する技術は、写真フィルムが発明された時代から技術開発が続けられ、未だに先端技術分野で扱われている。今ではフィルムにトランジスタをロールtoロールで形成する技術が実用化されつつある。
有機トランジスタ薄膜を形成する最先端技術から単なるフィルムの帯電防止薄膜塗布のような先端技術まで薄膜塗布技術を眺めてみると、科学的というよりも泥臭い経験の積み重ね技術の占める割合が大きいことに気がつく。すなわちノウハウの比重が大きい。
技術内容については特許や学術論文で公開され、科学的に理解できる部分は公知であるが、それだけで実現できる世界ではないのが薄膜塗布技術である。簡単に思われる帯電防止薄膜についても経済的にも優れた技術になってくると科学の世界だけでは実現できない。タグチメソッドは一つの手段だが、システムが決まらなければそのメソッドも使用できない。
薄膜の世界では、kgあたりのコストではなく平米あたりのコストで論じられることが多い。付き量が性能を左右する事が多いので結局は重量当たりのコストも大切なのだが、単位面積当たりのコストで比較した方が便利なためである。また重量当たりのコストが高くても薄膜の機能を少ない付き量で実現するという技術開発テーマもあるので、付き量よりも機能を実現できる単位面積当たりのコスト比較が重要になってくる。
薄膜塗布技術で面倒なのは塗布設備が大規模になる場合が多いことだ。スプレー塗布の場合にはそれほどの規模にはならないが、塗布液の組成の自由度が小さいという問題がある。換言すれば、塗布液の工夫を行えば塗布設備を簡略化できる、ということだ。このあたりのカンどころは経験が無いと大失敗につながる。
いろいろな薄膜塗布の開発を経験すると、実現したい機能性薄膜から容易に処方液と塗布方式が見えてくるようになる。写真フィルムの会社に勤務して勉強になったのは、プロセス担当がイメージするシステムと処方設計の担当者がイメージするシステムが異なる場合が存在したことだ。すなわち薄膜塗布技術では処方設計から塗布プロセスまで全てに熟知している必要がある。そして両者がわかるとレオロジーという学問のありがたさが見えてくる。
カテゴリー : 連載 高分子
pagetop
仕事のため彼女の記者会見を全て見ることができなかったが、会見が始まって彼女の謝罪の言葉を聞いていると、こちらまで辛くせつなくなった。せっかくの大発見を前に、科学者としての実力を磨かないまま学位を取得し運良く現在の立場になったため、とんでもない不幸な状況に彼女は置かれているのだ。(注)
恐らく彼女の頭の中から今でも「STAP細胞の発見」という偉業が離れないのだろう。当方も30年以上前の高純度SiCを発明したときの興奮を今でも覚えている。しかしFDを壊される事件が起きたときには、事業の成功を夢見て問題を大きくすることを避け、開発担当の役目から身を引く道を選んだ。
しかし、昨日の彼女の会見は、科学的に疑いを晴らすと言うよりも理研と裁判で争う方向に見えた。この選択では、おそらくここまで社会的な大騒ぎになると裁判で白黒を明確にする方向ではなく、どこかで和解することになるのだろうが、しこりは残る。そのため、このような場合に個人の判断としてその後のことを考え、穏便に解決しようとするのが一般的だ。
ただ、穏便に解決した結果は明らかで、栄誉は得られない。栄誉は得られないが彼女が望む平穏な研究生活は戻る。究極の選択を迫られ、彼女は栄誉を選んだのだと思う。その後の彼女の人生を心配しなければいけない立場ではないが、学位論文も満足に書けず、またせっかくの大発見も台無しにしてしまう力量で栄誉だけを選ぶ、という選択には、会見の内容と合わせて考えると、どこか不純さを感じる。
おそらく今回の会見については賛否両論まっ二つにわかれるだろう。今回の場合ではマスコミが指摘しているように理研にも問題があり、彼女の科学に対する姿勢にも誠実さや真摯さが感じられない問題がある。もし彼女にそれなりの力量があったなら、今回とは異なる道を選んだと思う。少なくとも法廷闘争で決着をつけるような問題ではない。科学に真摯に向き合おうとするならば理研との関係修復を早く行い、立派な研究を行うことである。
(注)今回の事件は、科学に精通していなくとも、あるいは科学の力量が低くても科学の大発見ができるという大切な例になると思う。STAP細胞は科学をよく理解できていなかったから発見できた、とも言える。技術のブレークスルーを行うのに科学が絶対に必要というわけではない。科学は「あれば便利」という役目に過ぎないのだ。また科学的に前向きの推論を進めた結果、時間がかかるということも起きる。科学の時代に科学的方法論は重要だが、それが全てではない、ということを今回の事件は示している。また凡人にも犬も歩けば棒に当たる的大発見の機会は存在し、その時に備え、科学以外の方法論も学んでおく必要がある。カラスでもクルミを割る方法を発明する時代である。弊社は科学も包括した技術開発の方法を指南します。
カテゴリー : 一般
pagetop
材料の熱膨張と熱収縮を測定するとヒステリシスが必ず現れるのか、というとそうではない。例えばSiC。6HSiCは結晶系が異方性なのでa軸とc軸の線膨張率が異なる。この単結晶の線膨張率を2000℃まで計測してもそれぞれの軸にヒステリシスは観察されない。
それは、6HSiCの膨張と収縮が化学結合の膨張と収縮の結果であり、その構造からシミュレーションした値と実測値がうまく適合する。また、6HSiCから製造した焼結体の線膨張率については、結晶で計測された値の平均値として観察される。
ただし、これは、助剤としてBを0.2%、Cを2%用いたときの実験結果である。助剤がかわり粒界にガラス相が形成されると線膨張率にその影響が観察される。セラミックスでは熱膨張や熱収縮は大変分かりやすい現象である。
しかし高分子の熱膨張や熱収縮では、自由体積の影響、結晶化度の影響、アモルファス相が均一になっていない影響など複雑である。ゆえに樹脂の熱膨張や熱収縮ではわずかなヒステリシスが観察されたりする。高分子複合材料系になればもっと複雑な変化となる。
TMAはこれら複雑な変化を検出する実験装置であり、最近は熱膨張や熱収縮を実験できるだけでなく粘弾性の実験もできるように工夫した装置も発売されている。高分子材料の開発を行う場合には是非1台揃えておきたい装置である。
樹脂の熱膨張や熱収縮によるヒステリシスに時間のファクターが含まれていることは昇温速度を変えた実験を行いある程度理解することができる。この影響は熱衝撃による疲労に現れる。長時間熱衝撃の存在する環境で樹脂を使用していると変形やひび割れなどが成形体に現れる。微粒子分散系では靱性が下がるので破壊という結果になる。TMAを使い、これらの予測技術を開発することもできる。
カテゴリー : 連載 電気/電子材料 高分子
pagetop