UL94-V2を目標に溶融型で樹脂の材料設計を行った場合にフッ素系樹脂を添加してはいけない。フッ素系樹脂は1%前後添加すると溶融物を抑制する作用を発現する。フッ素系樹脂を用いる場面は炭化促進型で材料設計を行い、ドリップを抑制したいときである。溶融型で添加するとどうなるか、興味のある方は溶融型で材料設計された樹脂に1%前後のフッ素樹脂を添加してみると良い。実験結果はここでは触れない。
溶融型による材料設計の面白いところは、難燃剤を添加しなくてもUL94-V2レベルを通過できる樹脂の設計が可能な点である。難燃剤を添加していないのでLOIは21に到達しないが、これはLOIの試験方法を工夫すると21に到達する。邪道と言われかねないのでこれ以上書かないが、この結果は溶融型による材料設計で実火災の時にも効果があることを示している。
30年以上前、新婚家庭には売れないかもしれないが燃えない寝具を開発していた時に軟質ポリウレタンフォームを溶融型で材料設計した。入社して間もない頃だったので胡散臭い方法と思いながら仕事をしていたが、寝たばこの実験を行ったときにその先入観は吹っ飛んだ。着火するがすぐに自己消火するのだ。タバコ2本でも大丈夫であった。それ以来あさはかな先入観は持たないことにした。
このモデル実験で溶融型による難燃材料設計の有効性を知った。この時は難燃剤が5%添加されていたが、うまく材料設計すれば難燃剤無添加でもいけるかもしれないと思った。しかしテーマが終わったのでそれ以上の検討はできなかった。退職前にPETの難燃化設計を検討できるチャンスが訪れた。30年以上前の思いで材料設計を行ったところ難燃剤無添加でもUL94-V2を通過できる樹脂を設計できた。強相関ソフトマテリアルという概念を用いて材料設計を行い、PETに20wt%程度5種類のポリマーを添加している。5種類のポリマーにはそれぞれ樹脂の機能分担が決まっており、それをバランスさせて材料を完成した。
カテゴリー : 一般 高分子
pagetop
30年以上前に存在したJIS難燃2級という規格は欠陥規格であったために簡単に燃えてしまう天井材の普及を促し問題となった。当時硬質ポリウレタンフォームの軽量天井材が現場の施工で好評であったがJIS難燃2級から新しい簡易耐火試験に規格が変更されてからフェノール樹脂発泡体へ置き換わっていった。この規格見直しの引き金となったのは、以前紹介した餅のように膨らむ硬質ポリウレタンフォーム天井材である。
この餅のように膨らむ硬質ポリウレタンフォームは科学的な材料設計の成果として開発された。餅のように大きく膨らみ変形すれば火元から材料が逃げることができ、その結果延焼を防ぐことができる、という「仮説」(注)で材料設計されたが、これは説明するまでもなく姑息にもJIS難燃2級の規格の欠陥をついた考え方である。この材料設計の危険性は実火災を考えれば明らかであり、餅のようにふくれあがり一瞬火から逃げることができても、LOIが21以下の材料では引火したら新たな火源となる。
技術的に考えるときには機能が重要なので、「火がついても消える材料」、という最低限の機能を持った材料を設計しなければいけない。このような設計を実現するためのノウハウは、「溶融型(ドリッピング型)」か、「炭化促進型」で材料設計をするかのいずれかである。これが筆者のノウハウで、このノウハウでPETを8割ほど含む樹脂でUL94-V2を通過できる材料設計を1ケ月で実現している(実験室評価)。
他の技術者の中には、これ以外のノウハウを持っている方がいるかもしれないが、高分子の難燃化設計を行うときに、この2つのノウハウによる実現の可能性を筆者の場合には考える。そのために設計対象の材料でまず燃焼試験を自分で行うか、自分でできない場合には必ず試験の時に立ち会うことにしている。そして燃焼挙動から、難燃化設計の方針と到達レベルを予測する。これは難しいことではない。
UL94-V2レベルならば溶融型でも炭化促進型でも達成できるがV0になると炭化促進型でなければ実現できない。もしドリップが激しい樹脂であれば、溶融型の設計でまずV2レベルを狙い、V0は溶融しない樹脂とのブレンドを検討することになる。
PETはTgが低く着火すればすぐに溶融が始まる樹脂なので70%以上のPET含有率の樹脂を設計する場合にはUL94-V2レベルの樹脂が目標となり、UL94-V0を目標とするならばPET含有率を50%以下にして炭化促進しやすいPCなどとのブレンドで材料設計を行う。
このノウハウは環境樹脂としてよく知られているポリ乳酸樹脂の設計でも使われており、例えば電気機器の外装材ではUL94-5Vbが目標となり、ポリ乳酸樹脂の含有率を30wt%前後まで下げて材料設計されている。30wt%前後しかポリ乳酸が含まれていないにもかかわらずポリ乳酸樹脂と呼ばれたりするのは少し奇異に感じるが、ポリ乳酸を70wt%以上含有する樹脂でUL94-5Vbを通過する材料設計はノウハウから判断して、開発工数も含めかなりのコストアップとなる。しかし、炭化促進型で強相関ソフトマテリアルの考え方を用いれば可能と思われる。
(注)昨日も触れたがこのような命題は、真理を追究する科学の仮説とはよべない。
カテゴリー : 一般 高分子
pagetop
科学と技術の相違点の一つとして、技術にはノウハウというやや抽象的概念までもあたかも定理のごとく扱い、目標とする機能を実現するところがある。科学では一つの真理を目標とするので経験的な事項や再現性があっても論理的に理解できない現象を利用することはない、というよりもそれを行ったら科学の存在する意味が無くなる。科学技術とはうまい表現でこのような相違点をうまくカプセル化している。しかし、このカプセル化が時として技術の伝承を困難にする場合があるので注意が必要である。
例えば以前この欄でも紹介したが特公昭35-6616という酸化第二スズゾルを用いた帯電防止薄膜の技術は、その周辺のノウハウとともに伝承されず、ライバル会社に1000件以上の特許を出願されて使用できない状態になっていた。公知の技術については権利化できないはずであるが審査請求された発明について異義申し立てが無ければ発明は新規技術として登録される。ゴム会社から転職した写真会社では特公昭35-6616という特許の存在までも忘れ去られ、つぶせる特許もつぶせない状態であった。
技術の伝承がなされない場合に重要な基盤技術が揺らぐ、という表現がされるが、「揺らぐ」どころではなく自分たちの開発した技術であっても使えなくなるのである。10年以上前から技術経営(MOT)の重要性が叫ばれているが、技術の伝承はその重要検討課題である。帯電防止技術の悲惨な状況を立て直しうまく伝承できる体制まで創ろうとしていた道半ばにデジタル化の波に押し流されて実現できなかったが、帯電防止技術は写真フィルムだけでなく複写機にも活用できる重要な基盤技術のはずである。しかし、それが認知されていない風土では、まずその風土を耕すところから始めないとダメであることを学んだ。
高分子の難燃化技術も帯電防止技術同様にノウハウが多く技術の伝承が難しい分野である。そもそも科学的に整理されていない技術分野は、企業の中で基盤技術として共有化されるまでの道のりが険しいようだ。トップが非科学的なノウハウの重要性を認識しない限りノウハウの塊の技術を基盤技術として育成することはできない。写真会社の経験では非科学的な内容を軽蔑する風土があり、ノウハウを職人の世界の技術のように扱われていた。非科学的な内容をあたかも科学の香りがするように努めなければいけない風土では非科学的な技術は育たない。
高分子の難燃化技術で難しいのは、対象とする商品の活用される分野が異なると難燃化規格が異なるケースが存在することである。高分子の燃焼について科学的に解明がされていない部分が多く「燃えにくい」高分子材料を科学的に完全に表現できていない。ゆえに商品の活用分野や業界が変わると難燃化規格が異なることになる。この様々な難燃化規格の存在が科学的な材料設計技術を難しくしている。明日はこの点について述べる。
カテゴリー : 一般 高分子
pagetop
高分子の難燃化技術は、科学的に攻略しにくい技術である。20世紀末様々な技術開発が行われ、臭素系難燃剤がある一定の市場規模を占有したと思ったら、環境問題に関わる各種法律及び規制によりその市場が縮小し始めた。
一方でハロゲンと三酸化アンチモンとの組み合わせは経済的で高い防火性能を発揮する難燃剤であり、これに置き換わる統一コンセプトの技術は存在しない。今リン酸エステル系難燃剤メーカーは臭素系難燃剤に奪われた市場を取り戻すチャンスである。
ところが高分子の難燃化技術におけるリン酸エステルの役割について30年以上前に提案されたメカニズム以上の研究報告は無い。また、その提案されたメカニズムについても理解はできるが、はたしてそれが100%正しいのかどうか怪しい部分も存在する。恐らく高分子の種類ごとにそのメカニズムを詳細に研究しなければいけないのであろう。
このような科学的研究を進めにくい分野で仮説を持って実験を進めよ、と言われ困った経験がある。それは、建築材料の開発において餅のようにふくれる硬質ポリウレタンフォームを設計した人物である。この硬質ポリウレタンフォームの開発で建築の難燃化基準の見直しが行われるようになったので大きな成果をあげた、と評価はできるが、一方でLOIが19程度の材料で建築材料を設計できる、と考えた甘い考えの研究者という見方もできる。
彼は、硬質ポリウレタンフォームの開発過程で、当時の規格JIS難燃2級の試験を行ったときに極めて性能の良い処方を発見した。調べてみたら難燃性試験の時に大きく変形して炎から試験片が外れていた。そこで餅のように大きく膨らむ材料設計にすれば難燃性試験を通過できると、仮説を立てて開発を行った、と誇らしげに説明していた。
はたしてこれは技術開発における正しい仮説と言えるのだろうか。そもそも仮説とは何か、という前に製品の品質設計の考え方に怪しいところがある。実火災を想定したら、少なくとも材料は自己消火性に設計されていなければ危険である。LOIが19程度の材料では、仮に難燃性試験を100%通過できても実火災で引火した瞬間よく燃え、それ自身が火災を加速する存在になる危険きわまりない材料となる。構造材料には使用できない。
溶融型で消火する技術では、溶融により火が消える機構が明確で初期消火に効果があることが分かっている。しかし火炎から変形して規格を通過する、というのは邪道である。着火してからの挙動が溶融型では消火となるが変形逃避型では消火する保証が無い。
30年程前に仮説による実験の重要性を教えられたが、事例が悪かった。餅のように膨らむ硬質ポリウレタンフォームの普及で難燃性試験が見直され、プラスチックフォーム建築材料は硬質ポリウレタンフォームからフェノール樹脂フォームに変わっていった。科学的に取り扱いにくい分野の技術開発では、仮説よりもあるべき姿を想定することが重要と思う。あるべき姿を実現できる機能とは何か、を追究するのが技術開発である。仮説とは真理を追究するために用いる。
カテゴリー : 一般 高分子
pagetop
妄想を実現可能なアイデア、そして実際の研究開発テーマに仕上げるために、30年以上前に考案した弊社の研究開発必勝法でまとめてみた。その手順に従い研究開発を進めた。
最初に行った実験は、コストを考えず妄想が正しいかどうかを確認するモデル実験である。フェノール樹脂のソフトセグメントに含まれるフェノール性水酸基あるいはメチロール基と反応しうる活性シラノールもった水ガラス抽出ケイ酸とフェノール樹脂を混合する試みを確認した。
水ガラスから抽出されたケイ酸ポリマーのTHF溶液とフェノール樹脂を混合し、THFをエバポレーターで除去しケイ酸変性フェノール樹脂を試行錯誤で製造した。このような実験手順を記載した科学情報や特許など無かった時代である。ケイ酸ポリマーの抽出法に関してはセメントの改質特許を参考にした。30年以上前にそれをフェノール樹脂の変性に応用したのは世界で初めての有機無機ハイブリッド技術であり、難しそうであったが困難と捉えず萌えの感覚で実験した。
酸触媒と発泡剤を混合して何とかフェノール樹脂発泡体にできたのだが、驚くべきことにフェノール樹脂の脆さが著しく改善されていた。また耐火性も難燃剤を用いなくても高い防火性を持っていたリバースエンジニアリング不能なフェノール樹脂と同等であった。熱分析を行ったところソフトセグメントの熱分解挙動は消失していた。仮説とは呼べないが、こうあって欲しいと思い描いた妄想は的中していた。このように科学的では無いが目標を達成することができたので研究開発必勝法の次のステップへ進んだ。
3種類ほどシリカの超微粒子を用意し、フェノール樹脂に分散した。超微粒子なのでうまく分散しない。高分子界面活性剤で超微粒子を前処理して同じ実験を行ったところうまく分散した。一般にはカップリング剤で処理をする場面であるが、カップリング剤は高価である。高分子界面活性剤でカップリング剤と同様の効果が得られることをノウハウとして経験で学んでいた。経験で得られた結果を使用しているので非科学的ではあるが、得られた発泡体はケイ酸ポリマーで変性したフェノール樹脂と同様の防火性と靱性の高さを示した。
K1チャートでゴールまでたどり着き、特許を1件書くことができた。K1チャートの良いところは実験がうまくゆかなかった時に次のアクションが決められている点にある。そして次のアクションを実施した結果がゴールにどのような影響を及ぼすのか可視化されている点も便利だ。文面では説明しづらいがご興味を持たれた方はお問い合わせください。
(注)このフェノール樹脂の開発では、「ソフトセグメントを拘束したならば防火性を高められるのではないか」という仮説もどきを確認するように実験が進められたが、ソフトセグメントと防火性の関係について科学的な根拠があったわけでなく、グラフに現れた現象の一つである。ゆえに仮説もどきを科学的な仮説と同等に扱うためには多くの実験、すなわち研究が必要になる。「仮説を持って実験を行え」と指導するケースが多いが、指導される側は仮説もどきと科学的な仮説の谷間で右往左往している。むしろ、こうなって欲しいと期待して実験を行え、と指導した方が開発現場では良いのではないか。仮説という難解な言葉でアイデアがしぼむ場合もある。むしろアイデアが芽生えるような、すなわち現場が発明に「萌え」るリーダーシップが重要である。
カテゴリー : 一般 高分子
pagetop
30年ほど前、難燃剤を使用しなくても建築基準を満たすフェノール樹脂発泡体を供給できるメーカーがあるにもかかわらず、他社は難燃剤を5-10%程度添加したフェノール樹脂原液を販売していた。しかし科学的なお決まりの手順で難燃剤が添加されていないフェノール樹脂を解析しても満足な結果が得られず、処方設計の仕事が暗礁にのり上げたが、試行錯誤の実験でブラックボックスをリベールしようと難燃剤を添加しない状態の樹脂で実験を始めた。
難燃剤の入っていない樹脂原液を発泡体にして熱分析したところ、3次元架橋しているはずのフェノール樹脂にソフトセグメントが存在している可能性が重量減少曲線から読み取れた。パルスNMRで確認したところ明らかにソフトセグメントであることが分かった。さらに試行錯誤で触媒の種類や量を変えて製造したフェノール樹脂発泡体に含まれているソフトセグメントの量と防火性とが相関したのだ。
横軸に熱分析とパルスNMRで推定したソフトセグメントの量、縦軸に防火性の指標を取り、様々な条件で合成されたフェノール樹脂サンプルの測定結果をプロットしたところうまく相関した。そして、樹脂原液を販売せず、発泡体のみ販売しているメーカーの製品は、その延長線上に存在する可能性のあることが非科学的ではあるが推定された。
まだ検討していない条件でそのサンプルのレベルに到達できるかもしれないが、ソフトセグメントの量は反応機構から樹脂原液の影響を受ける可能性がある。さらに試行錯誤の検討を続けるのか、あきらめて別の技術手段を検討するのか迷ったが、低コストで建築基準を満たすフェノール樹脂発泡体を開発するのが目標なので、完全なリベールを断念し、コストを低減できる技術手段を検討することにした。
ゴム会社では樹脂原液を購入し発泡体に仕上げ天井材として販売するビジネスなので、樹脂原液よりも低コストの材料と複合化させコストを下げる開発が重要になる。安価な無機フィラー添加はその常套手段となるが、脆いフェノール樹脂をさらに脆くする。試行錯誤の実験で見いだしたソフトセグメントを減量できる対策をいろいろ考えてみた。妄想であるがソフトセグメント近傍に運動性を阻害できる無機成分を反応させれば目的を達成できる可能性が見えた。
カテゴリー : 一般 高分子
pagetop
一般のフェノール樹脂はLOIが25以上あり、空気中で自己消火性である。しかし、フェノール樹脂の発泡体は配合処方の違いで、建築基準の不燃性を満たす材料から建築基準を外れるものまで防火性が異なる。建築の難燃基準を満たすフェノール樹脂発泡体は、軽量断熱材料として天井材などに用いられている。
フェノール樹脂には、アルカリ触媒でオリゴマーを生成後酸触媒で硬化させるレゾール型フェノール樹脂と酸触媒でオリゴマーを生成してアルカリ触媒で硬化させるノボラック型の2種類が存在する。発泡体にはレゾール型フェノール樹脂が用いられている。
30年以上前に調査した時に驚いたのはフェノール樹脂発泡体に関して各社材料設計の考え方が異なっていた点である。発泡体だけ販売するメーカーから、樹脂原液を販売し難燃性の設計をユーザーに任せるメーカーまで様々であった。また、建築基準を満たす材料として販売しながらその品質保証をしないところもあった。
ゴム会社では、硬質ポリウレタン発泡体の後継商品として企画していたので、社内で発泡体に仕上げ付加価値をつけて販売する方針だった。しかし、レゾール型フェノール樹脂原液を購入し発泡体を合成すると、どこのメーカーの原液を使用しても建築基準を満たす発泡体が簡単にできなかった。LOIまで様々な発泡体ができた。驚いたのは重合条件を少し変えただけでLOIが10以上も変化するフェノール樹脂があったことだ。
とりあえず各社のモデルサンプルを徹底的に解析し、処方設計しようという方針が出されリバースエンジニアリングを始めたのだが、三次元に架橋したフェノール樹脂の解析は難しかった。1社ずば抜けて難燃性の高い商品を出していたところがあり、とりあえずその商品について徹底的に化学分析を行ったが、驚いたことに難燃剤が検出されない。
この一社集中リバースエンジニアリング作戦はタマネギの皮をむくような結果に終わり、難燃剤を使用しなくとも建築基準を満たすフェノール樹脂発泡体ができることだけが唯一の成果だった。
カテゴリー : 一般 高分子
pagetop
ゾルをミセルとして用いたラテックス重合技術は科学よりも先行していた。科学の時代において科学で明らかになっていない現象でも技術で機能が実現され活用されている事例は多い。
例えば、フローリーハギンズの理論で否定される組み合わせのポリマーアロイは多数ある。コンパチビライザー無添加でポリオレフィンとポリスチレンを相溶させた例や、PPSと様々なナイロンを相溶させるプロセシング技術などはその一例である。
半導体用高純度SiCの前駆体について、反応条件を科学的に見つけるのは難しい。また30年以上前に実現した樹脂補強ゴムも、試行錯誤で発見された配合処方である。これら科学的ではない技術成果はなかなか世間から注目されない。もっとも試行錯誤で実現された技術は、科学的に解析した場合にブラックボックスとなるケースが多い。iPS細胞のヤマナカファクターもテレビでその発見手順が公開されるまでどのように発見されたのか誰も分からなかった。
あまり関心が持たれていないがゾルをミセルに用いたラテックス重合技術は、有機無機ハイブリッドを製造する簡便な方法である。超微粒子が高分子中で凝集しない状態を容易に製造可能で、応用範囲は広いはずだが学会発表を行っていないので、特許はあまり出願されていない。
すでに特許は公開されているがPPSとナイロン樹脂を相溶させるプロセシング技術は、ウトラッキーのEFMのような生産上の制約がなく、様々なポリマーアロイ創出に利用可能な技術である。おそらくこのプロセシング技術については関連する研究が今後報告される可能性がある。高分子自由討論会では2件研究報告がアカデミアからあった。
ポリオレフィンとポリスチレンを相溶したポリマーアロイではクロスニコルで暗くなるので位相差板に応用可能である。これはポリスチレンを合成した会社から特許が出ていた。
TRIZやUSITを導入する企業が多いように科学的方法が重視されている。確かに科学という思想は、20世紀の技術開発スピードを加速し多くの発明や発見に寄与してきた。しかし、失われた10年が20年となり、そろそろ新しいイノベーションが求められているところへ山中博士のノーベル賞受賞という話題が昨年あった。この受賞の意味するところは技術が科学を先行した点が重要で、ヤマナカファクターを見いだすのに非科学的方法を躊躇無く採用している。
科学は役にたつ思想である。しかし、それだけでは新しいイノベーションは難しく、有史以前から人間の営みとして行われてきた技術を今風にアレンジし日々の開発に活用することで、科学にとらわれすぎて見落としてきた新たな現象を発見できるのではないかと考えている。非科学的方法ではあるが、弊社の研究開発必勝法プログラムの目指すところである。
カテゴリー : 一般 高分子
pagetop
電気粘性流体用傾斜組成粒子の開発では、その分野の科学情報に一切触れること無く、当時世界最高の応答性と電気粘性効果を有する電気粘性流体用粒子を創り出すことができた。また電気粘性流体の增粘問題では科学情報だけでなく、そもそも電気粘性流体とは何かについて社外に公開される情報程度の知識以外は提供してもらえなかったにも関わらず技術で問題解決できた。
同じ会社の中でこのような状態で良いのか、というマネジメント上の問題はここでは議論をしない。たまたまおかしな研究開発マネジメントの状況で科学情報が無くとも技術を創ることができた貴重な体験で、当時技術について考えたことをまとめる。
電気粘性流体を3年以上研究開発していて何故各種問題を解決できなかったか、という疑問がでてきたが、增粘の問題を解決した後や傾斜組成の粒子を創り出したときにプロジェクトリーダーから褒められたのではなく責められたので問題解決できなかった原因を理解できた。
すなわちプロジェクトリーダーは電気粘性流体の研究情報を隠し持っているのではないか、という疑いをもち、傾斜組成の粉体を開発できたときにすぐに情報開示を求めてきた。電気粘性流体の論文情報など全く持っていなかったのだが、実験のお手伝いをすればどのような機能が必要なのかは技術者であれば誰でも分かる、と回答した。しかし、必要な機能が分かってもメカニズムが解明されなければ問題解決できないはずである、というのがプロジェクトリーダーから返ってきた言葉であり、これは典型的な科学の思想である。
機能を実現するために試行錯誤を行っただけだ、と技術の姿を答えてもその方法論を否定されるだけであった。科学と技術について哲学的議論を行いお互いの考え方の溝を埋めるべきであったが、上下関係でこのような議論は難しくなる。
確かに科学的にメカニズム解析に成功したならば、その機能実現のためのヒントは得られるかもしれない。だから仮説を持って科学的に仕事を進めることの重要性が20世紀に言われ続けてきた。しかしメカニズムが分からなくとも、経験を活用してモノを創り機能をテストしながらその実現を試みる、というアプローチも科学的ではないが有効な手段である。電気粘性流体の粒子よりも優れた成果であるヤマナカファクターもそのような方法で見つかっている。iPS細胞の生成機構など分からなくても消去法で4組の遺伝子を実験を担当した学生が決定しているのだ。その実験を認めている山中博士は並の科学者ではない、ノーベル賞が本当に似合う研究者だ。
科学では「なぜ」という問いを発し思考を深めてゆくが、技術では「どのように」という問いでそれを行う点が異なる。この問いの違いで頭に浮かぶアイデアや現象を前にしたときの取るべきアクションが変わる。科学では「なぜ」の繰り返しで真理に迫る単調な作業となるが、技術ではよりよい機能を実現できる方法を求めダイナミックに作業を展開する。ヤマナカファクター発見の時に、非常識と思われるすべての遺伝子を一つの細胞に放り込んだ行動のように、大胆な作業が技術の特徴である。
ヤマナカファクターに比較するとゴミのような電気粘性流体の增粘の問題では、手元にある界面活性剤類似の化合物も含めすべてについて增粘した流体と組み合わせて改善の兆候を探索した。傾斜組成の粒子では、傾斜組成以外に超微粒子分散微粒子や微小コンデンサー分散微粒子など創ってみて電気粘性効果を確認し、電気粘性流体に必要な粒子の構造解析を行っている。
科学的に電気粘性流体のメカニズムを解析しようとしたのではなく、電気粘性効果を機能させるために様々な複合構造の微粒子を試し、どのような構造で機能が実現されるのか探した。科学と技術では問う目的、思考の方向が異なるのである。どちらが優れている、と比較する対象ではなく、研究開発で早く製品にたどり着ける方法となると技術となり、その機能実現において活用された自然現象の真の姿を問うのが科学である。
技術開発を行った後、科学的研究を行えば、守るべき基盤技術が明確になり、その伝承が容易となる。科学の研究が無い場合には、行為そのものを伝承することになり、特公昭35-6616に書かれた技術のように伝承されなくなるリスクが生まれる。技術と科学は目的が異なり、研究開発では両方必要である。
技術では科学よりも再現性のロバストが厳しく問われる。これは再現性のロバストが製品のコストに関わるからである。再現性のロバストが低い技術は実用性が無いものとして棄却される場合が多い。同じ機能を実現する技術が複数存在していた場合に技術の難易度よりもロバストの高さが重視されたりするケースもある。反応条件における論理的規則性が不明で消去法や試行錯誤で決めなければならない場合でも決まった反応条件でロバストが高ければそれは立派な技術である。iPS細胞を実現した力は科学ではなく技術であった。技術が先行し科学的に研究された一例である。
消去法で見出したり試行錯誤で創られた技術を軽蔑する科学者もいるが、消去法や試行錯誤は立派な機能実現のための一つの方法で、弊社ではそれを効率よく行うプログラムを提供している。消去法や試行錯誤も効率良く行えば、科学的な問題解決法に迫る方法になる。
カテゴリー : 一般 電気/電子材料
pagetop
表題の展示会が東京ビッグサイトで27日まで開催されている。かつてセラミックスフィーバーの時代には、年に2回ほど類似の展示会があっても満員盛況の状態であったが、この会場では出展者も少なく閑古鳥が鳴いていた。時代の流れを知るために時間のある方はその様子をご覧になると勉強になる。ゴム会社も小さなブースで代わり映えのしない展示物をならべていた。
そもそも30年前のセラミックスフィーバーは、断熱セラミックスエンジンの開発を目標としたムーンライト計画がきっかけとなり勃発した。このフィーバーでセラミックスに関する材料科学は大きく進歩したが、この科学の進歩を牽引したのが企業の技術である。
金属材料科学は古くから着実な進歩があり、20世紀中頃から石油化学の急速の発展で高分子材料科学が発展し、最後に登場したのがセラミックス材料科学のイノベーションである。大学まで科学を学び、社会に出てセラミックスフィーバーを体験し、科学の進歩が実は技術の進歩に牽引されている実態を知った。学生時代に科学は技術を牽引している、と学んだが、現実は新たな挑戦による技術開発で新たな現象が見いだされ、それが科学の発展を促していた。
マッハ力学史を読んでみても、科学と技術について技術は古くから存在していたが、どこから科学が生まれたかを明確にすることはできない、と書かれている。ニュートンでさえ非科学的な思考を行ってニュートン力学を完成させた、と表現されている。科学の発展により技術の進歩が加速されることはあったが、科学が無ければ新たな技術が生まれない、ということは人類の歴史を見る限り起きていない。
確かに新たな科学的発見と言われている成果により、技術のイノベーションが引き起こされてきた事実は多い。しかしイムレラカトシュの「方法の擁護」を読むと科学で完璧に証明できるのは否定証明だけ、と書かれており、「発見」そのものは非科学的であった可能性がある。
学生時代に科学を学んできた目にはセラミックスフィーバーは新鮮な世界であった。新たな技術により新たな科学が生まれる、という学校で学んだ流れとは逆向きの潮流が起きていたのだ。経済性を無視すればセラミックス断熱エンジンの車「セラミックスアスカ」は公道を走ることに成功した。これはセラミックスフィーバー初期に生まれた技術である。
セラミックス材料の展示会の低調ぶりは、材料科学の進歩が止まった、と見るのか、新たな技術開発が行われなくなった、と捉えるべきか。ゴム会社の展示物を見る限り20年ほど前から技術開発が止まっているかのようである。ところがゴム会社が商品の販売まで辞めてしまったSiCウェハーについては、事業を開始したときのパートナー住友金属工業から液相による結晶成長法という新たな技術について特許出願が行われている。特許を読むと着実に技術が進歩していることを理解できる。
バブルがはじけて20年以上経ち、新たなイノベーションが期待されているが、それを科学に期待するよりも、新たな機能にチャレンジする技術に期待した方が良いかもしれない。積極的に新たな技術にチャレンジする活動が新たなイノベーションを引き起こす。ゴム会社の高純度SiC技術は歴史の時計が止まったように見えるが、基本特許が多数切れ始めたので新たな技術開発のチャンスが生まれてきている。
前駆体法による高純度SiC合成法は、まだ新たな機能を生み出す技術開発の余地がたくさん残っている面白い技術である。弊社では研究開発必勝法プログラムに新たな技術をセットしたメニューも用意していますのでお問い合わせください。ちなみにこの場合は温故知新戦略となる。
カテゴリー : 一般 学会講習会情報
pagetop