活動報告

新着記事

カテゴリー

キーワード検索

2012.12/09 酸化第二スズゾル

酸化第二スズは、酸素欠陥の量で、物質の抵抗が1000倍以上変化する。そしてInやSbをドープしなくとも1000Ωcm程度の導電性が出る合成条件も存在する。四塩化スズを加水分解して得られる酸化第二スズゾルは、合成条件を制御すると、1000-10000Ωcmの超微粒子が分散したゾルとなる。このゾルとラテックスを用いると帯電防止用の透明コーティング剤となる。この帯電防止薄膜は昭和35年に小西六工業で発明されたが、1991年まで見捨てられた存在でありました。

 

この技術の面白い点は、この材料を評価した誰もがダメな技術と評価していたことです。原因は2つあり、酸化第二スズゾルの粒子の導電性が合成条件により1000倍以上変化することとパーコレーション転移の制御技術という概念が無かったことである。昭和35年の特許の実施例には驚くべきこととして処理し、この2点については触れられていませんでした。

 

パーコレーション転移については、1970年前後に数学者の間で研究が盛んになりました。また、高純度酸化第二スズの導電性については、1980年ごろに無機材質研究所でその導電性と酸素欠陥の関係が研究されました。このような状況ですから、1991年まで酸化第二スズゾルが良好な透明帯電防止剤として認識されていなくとも納得できなくはないですが、昭和35年の技術は小西六工業で発明されていますから技術の伝承がどうあるべきか、という問題を抱えています。

 

酸化第二スズゾルが透明導電性薄膜に利用できる、と再発見できましたのは、ライバル企業の特許網がきっかけでした。ライバル企業はATOを帯電防止薄膜に使用していました。ただ、ATOは若干青みがかっている問題がありました。この問題について、弊社の電脳書店で販売しています「問題は結論から考えろ!セミナー」、「なぜ当たり前のことしか浮かばないのか」で取り上げている問題解決法で問題解決し、酸化第二スズゾルの実用化に成功しました。ただ、この企画立案時に調査を行い、昭和35年の特許を発見したのですが、正直申し上げますと、特許網に穴をあけるには役立ちましたが、新材料開発に対するモチベーションは少し下がりました。

 

 

カテゴリー : 一般 高分子

pagetop

2012.12/08 酸化第二スズ

酸化第二スズの高純度単結晶は絶縁体です。このような金属酸化物は、酸素欠陥が生じると半導体になります。また三価もしくは五価の金属をドープしますと半導体から導体になります。InをドープしたITOやSbをドープしたATOは透明導電膜の材料として有名です。1950年代にこの化合物の導電性については研究されており、1960年には小西六工業から高純度酸化第二スズゾルを塗布した帯電防止フィルムの特許が出願されています。この特許が公開されてからコダックからITOを蒸着したフィルムの特許が、また富士フィルムから類似の特許が出願されていますので金属酸化物半導体の研究が活発に行われていたものと推定されます。

 

しかし、1991年にコニカへ入社しましたときにこの1960年代の状況をご存知の方はいませんでした。たまたま帯電防止技術について特許を整理していましたら、富士フィルムが金属酸化物系透明帯電防止技術の緻密な特許網を構築していた状況に遭遇し、ここにどのような穴をあけたらよいのか興味がわき、詳しく調べてみました。面白いことに1970年代中ごろから従来技術に1960年代の技術が特許に全然出ていないことに気がつきました。あたかも富士フィルムが特許権について独占しているかのような状況が出来上がっていました。

 

20年以上前の特許状況を丁寧に調べていて、特公昭35-6616という小西六工業の特許を見つけました。世界初の塗布による酸化第二スズ透明導電膜の特許です。この特許を軸にして新たな特許網を構築することにしました。無事ライバル特許の緻密な網に穴をあけることができ、デジタル向けの感材の帯電防止技術として使うことができました。

 

この時の経験は「特許で困ったら温故知新」という格言として当時の部下に伝承しました。

 

弊社では本記事の内容やコンサルティング業務を含め、電子メールでのご相談を無料で承っております。

こちら(当サイトのお問い合わせ)からご連絡ください。

カテゴリー : 高分子

pagetop

2012.12/07 出版事業

今年のベストセラーは、阿川佐和子著「聞く力」。残念ながらミリオンセラーが生まれない年になりました。地域の書店も20年前に比較し半減しました。ますます本が読まれなくなってきているのです。この傾向は10年前からあり、一方で専門書は値段が上昇傾向でした。情報はインターネットで容易に入手できるようになりました。インターネットの影響もあると分析されているのですが、書籍の役割はインターネットの情報と異なるところにあると考えています。

 

弊社は、漫画がヒットしている電子書籍業界に専門書に特化して参入しました。インターネットと書籍の境界に面白い事業ができるのではないか、専門書を安価に提供できるのではないか、と考えて事業を開始しました。弊社の販売しています書籍は、電子書籍ならでは、を目指しています。例えば、写真集「つばめ」は、都市でツバメが見られなくなるかもしれないと、撮影したての写真を半月で写真集に仕上げました。予感は的中し、今年から近所でツバメが見られなくなりました。突然の現象です。原稿から出版まで電子出版はスピードアップされます。

 

「高分子材料のツボ」などの電子セミナーは、電子書籍ならではの工夫をした書籍とは呼べない書籍です。「技術者が欲しかった中国語入門」、「会話から入る中国語基本5文型」などは、会話をクリックしますと音声が出る通常の書籍ではできない付加価値をつけた書籍です。

 

現在来年に向けて新しい企画を計画中です。漫画が主流の電子出版界の潮流に乗りアニメ調の専門電子書籍というコンセプトですが、決して軽い内容ではなく、双方向の面白い読みたくなる本を検討中です。ご期待ください。

カテゴリー : 一般 宣伝 電子出版

pagetop

2012.12/06 SiCパワートランジスター

3.11以降経済状況以上にエネルギーに対する考え方が大きく変わりました。いろいろな変化がありますが、大きく目立った動きとしてLED電球の普及とSiCパワートランジスターの開発スピードが上がったことです。前者は今年度の電球の売り上げは200億円を軽く突破し、1個のの値段が20W球が300円前後までに下がりました。60W球相当品も600円代を狙って推移しています。後者は2005年頃にSiC-MOSFETが上市され、特許がそのころより大幅に増加して今日に至っております。すでに民生用のエアコンやステレオアンプに搭載され始め、一部ハイブリッド車にも搭載されています。

 

SiCの半導体分野への応用はブリヂストンが先行したが今はウェハーについてはクリー社が王者で新日鉄や日本インターなどと契約し、日本市場へ攻勢をかけています。新日鉄はブリヂストンと同時期にプラズマ法による高純度SiCの開発に成功したメーカーです。当時はエンジニアリング分野を中心としたセラミックスフィーバーが吹き荒れており、新日鉄は開発に成功した高純度SiCの常圧焼結技術開発に苦しんでいました。彼らが開発しました高純度SiCは超微粒子の為、グリーン成形体密度を上げられないのと表面が活性で酸化されやすいため常圧で焼結ができませんでした。ホットプレスでは、カーボン助剤だけで98%以上の密度まで上がりました。

 

特許動向を見ますとデンソーがクリー社よりも現実的な出願戦略で出願しており、おそらく実用化で先を走っている三菱電機やロームよりも先行しているのではないか、と思われます。デンソーは石油を作る藻の研究開発を進めている会社でもあり、同社の特許動向を見ますとCTOのセンスの良さが見え隠れします。今という時代に要求される技術のトレンドやツボを押さえた技術開発を行っています。おそらく技術開発マネジメントがうまくいっている日本では数少ない会社で、5年後が楽しみです。

 

SiCパワートランジスターは、Siパワートランジスターの限界から開発が始められ、先行したGaNパワートランジスターを抜く勢いで開発が進められている。GaNが先行しながらもSiCが伸びている理由には資源リスクの問題もあり、クラーク数の大きなSiを原料とするSiCの方が環境面でもコスト面でも将来有利とみられている。ウェハーの性能としてはGaNの方が優れていても、である。ただ放熱性の尺度である熱伝導率は、この分野の材料の中でSiCが一番高い。

 

SiCウェハー分野ではクリー社一人勝ちの状況ですが、新日鉄や住友金属、ブリヂストンはじめ国内勢の追い上げに期待したい。まだこれからが勝負の分野です。なお豊田中研はこの分野で隠れた技術集団ですが、特許出願状況を見ますとデンソーとの契約があるようです。この分野もknow  who が重要で、クリー社を追い上げるためにはコラボレーションを考えなければいけないのかもしれません。クリー社は特許戦略を重視し巧みに共同開発契約を進めています。新日鉄とは技術面というよりも特許対策の要素が大きいように思われる。

 

 

弊社では本記事の内容やコンサルティング業務を含め、電子メールでのご相談を無料で承っております。

こちら(当サイトのお問い合わせ)からご連絡ください。

 

 

カテゴリー : 電気/電子材料

pagetop

2012.12/05 フェノール樹脂の難燃化(2)

M社のフェノール樹脂発泡体には難燃剤が添加されていなくともLOI=35前後という高い難燃性を示しました。他社のフェノール樹脂発泡体では同程度の難燃化レベルを達成するために難燃剤の添加が必要でした。リバースエンジニアリングを行うために化学分析を行いましたが、硬化触媒に硫酸と有機酸の2種を使用していることぐらいしか差異はわかりませんでした。高分子物性の観点から、パルスNMRを測定しましたら、他社のフェノール樹脂では観察されるソフトセグメントが全然ないことが分かりました。

 

フェノール樹脂は、高度に3次元化しているはずで、本来はM社の状態が理想です。このソフトセグメントの量が難燃性能と関係しているのではないかと仮説をたて、難燃剤無添加のレゾール型フェノール樹脂を触媒量や触媒の種類を変えてサンプルを作成し、パルスNMRと熱分析、LOIを測定しました。触媒の種類や量によりソフトセグメントの量が様々に変化しました。そして仮説通り、LOIは、ソフトセグメントの量に相関していました。また熱重量分析で350-400℃の領域で観察されるカーブの状態がソフトセグメントに関係していました。分解速度と残存量の数値化を行い、グラフ化しますと相関していることが分かりました。相関係数は低くなりますが、単純に変曲点の残存量だけでも相関していました。

 

以上のことからレゾール型フェノール樹脂の難燃性を上げるためには、ソフトセグメントの量を減らすことが重要である、との結論が得られたのですが、単純に触媒の種類や量を制御してもM社のような状態になりません。実験計画法を用いて酸触媒の組み合わせ効果を調べましたら有機酸と硫酸との併用が最もソフトセグメントが少なくなることが分かりました。

 

難燃性とソフトセグメントの量が関係しているのならば、ソフトセグメント部分に質量の大きい超微粒子を分散してやれば、見かけ上ソフトセグメントの量を減らすことができます。シリカゾルを前処理し、レゾール型フェノール樹脂に分散しましたところ見かけ上のソフトセグメントの量を制御できることが分かりました。面白いのは難燃剤ではないシリカゾルがソフトセグメントに分散したことにより、LOIが3程度上昇したことです。これらの実験から、高分子の難燃性にメソフェーズ領域の構造が影響していることを理解できました。

 

弊社では本記事の内容やコンサルティング業務を含め、電子メールでのご相談を無料で承っております。

こちら(当サイトのお問い合わせ)からご連絡ください。

カテゴリー : 高分子

pagetop

2012.12/04 フェノール樹脂の難燃化(1)

約35年ほど前のことですが、高耐火性フェノール樹脂発泡体が新材料として登場した。当時難燃性硬質ポリウレタンフォームが建材として使用されていた時代である。今は無くなりましたが難燃2級というJIS規格があり、この規格に合わせて材料設計されていた。「難燃性」に比較し「高耐火性」という商品名はいかにも燃えにくい名前である。実際にLOIは難燃性硬質ポリウレタンフォームが23-24前後に対し、高耐火性フェノール樹脂発泡体は35前後であった。LOIの値よりも驚いたのは、難燃剤が添加されていなかったことである。

 

M社の高い技術で分子設計され難燃剤を使用せず、難燃2級を通過した、とカタログの説明にありました。分析するとレゾール型フェノール樹脂で硬化触媒として硫酸が使用されていた。有機酸も検出されたので2種類の酸を触媒として用いていることまではわかりましたが、三次元にゲル化した樹脂の分析は大変難しい。ただこの高性能発泡体は3年ほど普及しなかった。理由は、断熱性が硬質ポリウレタンフォームよりも劣っていたためである。発泡密度をそろえて比較しても2倍程度の差がありました。原因は発泡剤として使用しているフロンガスが硬質ポリウレタンフォームでは数年残っているが、フェノール樹脂発泡体では1年未満で抜けてしまうためである。

 

難燃性硬質ポリウレタンフォームが普及して出てきた問題は、実火災でよく燃える、という現象です。LOIが21を超えておればタバコの火程度では燃えないはずですが、よく燃えてしまう。調べてみると、現場発泡した時の条件で、LOIが19前後の難燃性硬質ポリウレタンフォームができることが分かりました。しかし、それでも難燃2級を通過しているのです。原因は、難燃2級の評価方法にあり、硬質ポリウレタンフォームの物性ゆえに、試験炎があたると餅のように膨らみ炎から離れて、燃焼試験に通過する、という状態が観察されました。当時の通産省は慌てて難燃基準を見直し、簡易耐火試験という実火災に近づけた試験方法が登場し、高耐火性フェノール樹脂の出番となりました。

 

簡易耐火試験では燃焼後もある程度防火性を持っていなければならないので、樹脂の炭化率が40%を超える必要があり、硬質ポリウレタンフォームでは不可能な領域でした。炭化率と建材のコストを考慮するとフェノール樹脂発泡体以外の材料はありませんでした。フェノール樹脂材料メーカーが多数発泡体分野に進出してきました。各社のフェノール樹脂を分析しましたところ、M社以外は難燃剤を使用していました。

カテゴリー : 高分子

pagetop

2012.12/03 燃焼時のドリッピング防止

樹脂が燃焼すると燃焼時の熱で多くの場合溶融物(ドリッピング現象)が生じる。炭化しやすい樹脂ではドリッピングは生じないが、射出成形や押出成形で成形される樹脂のほとんどは難燃処理しなければ、ドリッピングする。燃焼試験の規格によってはこのドリッピングを防止しなければ通過しない場合がある。

 

例えばUL94-V試験は、燃焼サンプルの下方に硝化綿を置き燃焼試験を行う。硝化綿は少しの火の粉でも燃焼するので、ドリッピングがあると燃焼する。ドリッピングがあっても燃焼しなければ、UL94-V2に通過し、ドリッピングが無い場合にはUL94-V0となる。すなわち、UL94-V0を通過するためにはドリッピングを抑えなければならないが、高度な技術が要求される。

 

よく知られている技術として、PTFEなどのフッ素系樹脂を添加する方法がある。またドリッピングを抑制するための繊維状のフッ素樹脂なども市販されている。1%程度の添加で効果がありうまくゆく場合には感動するぐらいの効果がある。樹脂燃焼時に燃焼面で薄膜を形成し、溶融物を抑えているようだが、ドリッピングが多いときには、大きな火の玉に成長する。

 

すなわちフッ素系樹脂の添加だけではドリッピング抑制が難しい場合がある。このような場合には炭化促進を促す対策が必要で、リン系難燃剤の増量や炭化しやすい樹脂を20%以上添加するなどの処方変更が必要になる。

 

そのほかにドリッピングを防止する方法があるのかというと、1%程度の添加で効果があるのはフッ素系樹脂ぐらいで、溶融時の樹脂粘度を上げたりする対策では、5%以上の何らかの添加剤が必要になる。すなわち、ドリッピング防止をフッ素系樹脂以外の方法で行う場合には、樹脂の処方の見直しが必要になる。

 

弊社では本記事の内容やコンサルティング業務を含め、電子メールでのご相談を無料で承っております。

こちら(当サイトのお問い合わせ)からご連絡ください。

 

カテゴリー : 高分子

pagetop

2012.12/02 合わせ技の難燃化技術

三酸化アンチモンとハロゲン化物との併用技術以外にホウ酸エステルとリン酸エステルとの併用技術、水酸化アルミニウムとポリイミドあるいはポリアミドとの併用など難燃剤の組み合わせで難燃性能を発揮する難燃剤がいくつか存在する。いずれも1成分だけでは難燃化できないか、難燃化できても添加量が多くなる場合である。

 

例えば、水酸化アルミニウムの場合には、単独で添加した場合に40vol%以上も配合しなければLOIが21を超えない場合も存在する。樹脂を自己消火性にするためには、通常の場合LOIが21以上になる必要がある。この程度樹脂に添加した場合に樹脂の力学物性は、無添加の場合よりもかなり低下する。ゆえに炭化しやすい樹脂との併用で添加率を下げるとともに炭化しやすい樹脂成分を増やすことで力学物性を改善している。

 

ホウ酸エステルとリン酸エステルの場合には、難燃化しようとする樹脂によりいささか事情が異なってくる。例えばフェノール樹脂のような炭化しやすい樹脂でLOIが21以下の組成の場合にホウ酸エステルを添加すると単独でLOIは21を超えるようになる。しかしポリエーテル系ポリウレタンの場合にはホウ酸エステルを20vol%程度添加しても難燃化できないだけでなく(LOIが21を超えない)、力学物性は実用性のないものになる。しかしリン酸エステルと併用すると、リン酸エステル単独添加の場合に比較して半分の量で難燃化が可能になる優れた組み合わせである。

 

このように組み合わせ難燃剤というものが知られているが、難燃化レベルを空気中で自己消火するレベルという条件にすると、必ずしもLOIは21を超える必要がなくなる。ドリッピング現象が許されるならば、すなわち要求難燃性能がUL94-V2レベルであるならば燃焼時のドリップ現象を制御し、難燃剤無添加でも樹脂を難燃化できる可能性が出てくる。例えば軟質ポリウレタンフォームではTMPのような低分子成分を構造に導入するだけで自己消火性にすることができるが、LOIは19程度である。PETでも配合処方を工夫するとLOI=20程度でドリップ現象を利用して自己消火性にすることが可能である。コストダウンをしたいときには有効な方法である。

弊社では本記事の内容やコンサルティング業務を含め、電子メールでのご相談を無料で承っております。

こちら(当サイトのお問い合わせ)からご連絡ください。

 

 

カテゴリー : 高分子

pagetop

2012.12/01 三酸化アンチモンの難燃性

三酸化アンチモンはハロゲン系難燃剤と併用して用いられて初めて難燃剤としての性能を発揮します。驚くべきことは、体積分率として数%程度の添加でよい点です。一方樹脂により組み合わせるハロゲン系難燃剤の種類や量については様々です。

 

例えばPPとPSでデカブロモディフェニルオキサイド(DBDPO)を用いる場合PPでは20vol%程度必要だがPSでは10vol%程度でよい。添加量が2倍異なります。PSはPPよりも炭化しやすいから、という説明も納得できますが定説となっている三酸化アンチモンの難燃化機構から考えますと、三酸化アンチモンの量が同じにもかかわらず、DBDPOだけ2倍量必要というのは不思議な現象です。

 

同じことがABSとPBTについても言えます。これらの樹脂ではテトラブロモビスフェノールA(TBA)が使用されますが、三酸化アンチモンが同程度にもかかわらず、やはりハロゲン化物の添加量は2倍程度異なります。

 

このあたりの考察が必ずしも十分ではありません。特許情報を見ましても同様の傾向があり、難燃剤の研究開発を始めてから不思議に思っていました。軟質ポリウレタンフォームの難燃化研究をスタートした時の比較対象は三酸化アンチモンと塩ビとの組み合わせの難燃化システムで、当時の主力商品でした。この比較サンプルで興味深かったのは、配合手順で、同一難燃性を得るのに必要な塩ビ粉の量が変化したことです。

 

三酸化アンチモンの分散状態に大きな差異は出ませんでしたが、塩ビ粉の分散状態が変化していました。塩ビ粉はそれ自身凝集しやすく軟質ポリウレタン中の凝集粒子の大きさに違いがありました。また分散粒径にも違いがあり分散が大きい場合には、塩ビ粉の量が多めになっていました。当時の結果はハロゲン化物の分散状態がその必要な添加量に影響を及ぼしている、という非常に理解しやすい結果でした。

 

 

弊社では本記事の内容やコンサルティング業務を含め、電子メールでのご相談を無料で承っております。

こちら(当サイトのお問い合わせ)からご連絡ください。

カテゴリー : 高分子

pagetop

2012.11/30 V0を狙う樹脂の難燃剤

樹脂の難燃化技術は、樹脂を産業部材へ応用しようとする時に重要な技術である。ところが樹脂の種類により効果的な難燃化技術が異なる難しい技術である。またその評価技術も万能の評価技術は無く、それぞれの業界で決められた難燃化基準に応じて樹脂が処方される。UL94は評価技術としてかなり普及してきたが、実技評価なので材料の基礎物性値として採用しがたいのでLOIがその代わりに普及している。

 

LOIは、極限酸素指数法と呼ばれ酸素と窒素を混合したガス中で材料を燃焼させて燃焼挙動を観察する評価法である。評価方法は、自己消火を示す酸素濃度で最小の値を採用する方法ですが、偏差0.5程度で計測値が得られるので、樹脂への難燃剤の効果を表現するのに便利な方法である。

 

さて、樹脂の難燃性設計を行うに当たり、実技評価としてUL94を対象に考えてみる。電子部品などの内装材としてはV2レベルとしている場合が多いが、外装材になるとV0レベルあるいは5VBが要求される。5VBとはV0と同等かそれ以上の難燃性が要求されるレベルである。樹脂の種類により同等となる場合とならない場合があるが、5VBの方が難燃剤の添加量が多くなる場合が一般的なので5VBの方が難燃性レベルが少し高いと思われる。V0を通過するために要求されるLOIは、25から34となり、これも樹脂の処方により様々にばらつく。スクリーニングするときには、LOIの線形性の高さを利用してUL94との対応表を作り、LOIを基準に処方設計する方法が良く行われる。

 

樹脂に添加する難燃材の量は力学物性に影響するので少ない方が良いが、V0レベルを狙う場合に、難燃効果の高い難燃剤でも少なくとも体積分率で10vol%程度添加する必要がある。体積分率で表現したのは、難燃剤の種類により比重が異なるからである。体積分率でこのくらい添加すると力学物性では弾性率と可塑性に影響が出るので引張強度とか曲強度の低下が生じる。強度を低下させたくないときには、粒子状固体で分散する難燃剤が選ばれる。この用途では赤燐あるいは三酸化アンチモンとハロゲン系化合物との組み合わせが定番となりつつあるが、ホスファゼン誘導体も最近コストが低下してきたので試しておきたい難燃剤である。多少の強度低下に目をつぶるならばリン酸エステル系あるいは臭素系難燃剤が選ばれる。

 

環境規制の問題も絡むので、臭素系難燃剤や、アンチモン系処方は注意する必要がある。例えばRoHSでは、アンチモン系処方は問題とされないが、臭素系難燃剤の多くは禁止されている。またアンチモン系処方はRoHSで禁止されてはいないが、自主規制としてアンチモン系を採用しない企業もいる。こうした状況を考えると、V0を達成できる難燃剤として将来の規制も見据えると、ホスファゼン誘導体かリン酸エステルの縮合体、赤燐系とリン系難燃剤以外に効果的な難燃剤が見当たらない。樹脂の難燃化技術開発はあまり注目されていないが、まだまだ開発の余地が多く残っている分野である。

 

現在コストや力学物性への影響を考えた時に最も汎用的にV0を狙えるのは、と問われるとアンチモン系複合化難燃技術となるが、環境の問題が見え隠れする。業界によっては、すでにリン系難燃剤しか選択の余地のない業界もある。難燃剤メーカーがんばれ!

 

 

弊社では本記事の内容やコンサルティング業務を含め、電子メールでのご相談を無料で承っております。

こちら(当サイトのお問い合わせ)からご連絡ください。

カテゴリー : 高分子

pagetop