活動報告

新着記事

カテゴリー

キーワード検索

2014.03/14 古くて新しいセルロース(6)

液晶ディスプレーは、二枚の偏光板の間に駆動可能な機構を有する液晶を挟み込んだ構造で、バックライトを付設し画像を見やすくしている。現在は液晶をガラスで挟んでいるが、近い将来すべて高分子材料のフィルムで構成された液晶ディスプレーが登場する可能性がある。

 

有機ELやプラズマディスプレーのような自発光型のディスプレーに用いられるフィルムについて、セルロースがいつまで使用されるか不明であるが、液晶の偏光板に使用されるセルロースフィルムは、偏光板の材料としてポリビニルアルコール(PVA)が使用される限り、あるいは偏光板の製造に水が使用される限り、セルロースフィルムが使われ続ける可能性が高い。

 

理由は偏光板の製造プロセスにあり、現在のプロセスではPVAを水性接着剤でTACと貼り合わせ乾燥させる工程になっており、PVAを挟むフィルムが透湿性でない場合には偏光板の水分管理が難しくなる。偏光板の保護フィルム機能としては透湿性フィルムが必要と思われる。

 

ただし現在のTACフィルムは、環境負荷の高い溶媒を使用した流延法で製造されるので、今後セルロースフィルムを無溶媒で製造する新技術の開発が環境対応技術として不可欠である。

 

その他ガラスを置き換えるにはどのような変性が必要か、フィルムそのものを機能化し複数のフィルム機能を1枚のフィルムで達成できないか、さらには溶媒キャスト製膜よりも生産性が高い押出成型によるセルロースフィルムなどの開発課題は豊富である。

 

以前触れたが、ミドリムシプラスチックスはセルロースと類似の多糖類のプラスチックスでセルロースよりも流動性がある。すなわち変性セルロースで押出成形が難しくともミドリムシプラスチックス(パラミロン誘導体)ならば可能なので、この分野にミドリムシプラスチックスが応用されるかもしれない。

 

 

 

カテゴリー : 一般 連載 高分子

pagetop

2014.03/10 古くて新しいセルロース(4)

紙の発明は105年とされてきたが、それより250年前にも紙があった、というのが定説である。紙は科学が無い時代に技術だけで発明された情報記録媒体である。科学が無くてもこのような優れた材料を生み出すことができる点に着目し、未来技術へ展開するサイト(www.miragiken.com)を運営しています。

 

ところで、紙の定義は、主として植物体から繊維を取り出して、これを水の中に分散させ、金網や簾で水をこしわけて、薄く平らに絡み合わせて乾燥させたものとされたが、JISではプラスチックの表面を紙のように筆記具で記録可能な形態に変性したものまで紙に入れている。

 

ここでは50%以上のセルロースを含む紙だけをとりあげるが、それでも最近様々な紙が登場している。これらの紙の大半は、セルロースが含まれるパルプと他の材料とのハイブリッドである。

 

例えば、写真の印画紙や高級印刷物、食品容器に使用されるコート紙は、セルロース繊維で作られた紙に樹脂を積層したものである。またインクジェットプリンターで紙に印字するとコクリングが発生するので、その問題を解決するために、ラテックスと複合化したインクジェット専用紙も存在する。

 

また、有機材料であるセルロースと無機材料とを複合化させた有機無機ハイブリッドペーパーも実用化されている。例えば、折り紙で作ったイメージの焼き物を製作するために使用されるセラミックペーパーや、お祝い事に使用される水引に、セルロースと無機材料との複合化により発水性をもたせた超越紙水引と呼ばれる製品も登場している。

 

 

車愛好家に広く知られている“ボール紙ボディーの車”トラバントは、1958年から1991年まで長きにわたり、モデルチェンジもしないで発売された東ドイツの車だが、これは品質が悪いために揶揄された表現で、実際にはセルロース強化プラスチックであるFRPが使用されていた。

 

ちなみに、日本における産業用のゴミの分類では、セルロースからできているパルプが50%以上含まれていれば紙として扱われるので、トラバントの環境技術的先進性を評価すべきかもしれない。

 

約40年ほど前に、環境技術の一手段として古紙のリサイクル性をあげる目的で、混練によるパルプ樹脂複合紙が研究された。10年ほど前には、大阪の町工場で、この材料を用いたゴルフ用品が開発された、とニュースで報じられた。

 

この材料は生分解性を備えており、マナーの悪いゴルファーがティーの形状でゴルフ場に捨てていっても、1年ほどでその形が無くなる、とニュースでは報じていた。しかし、このニュースはいささか怪しく、なぜならばセルロースは多糖類なので土中のバクテリアにより分解しても、複合化に用いた石油由来の樹脂は残るはずである。100%完全な生分解性樹脂ではないが、形状が無くなればゴルファーのポイ捨ての罪悪感は少し救われるのかもしれない。

 

混練によるパルプ樹脂複合材料は、完全な生分解性樹脂ではない、という問題以外に、パルプに含まれるセルロースの水酸基には複雑な構造のアルデヒド類が結合しているので、これが混練時に分解し異臭を放つという難問がある。当然ながら製品にもその異臭は残る。

 

しかしこの異臭の問題については、混練プロセスにおける厳密な温度管理と樹脂の配合を工夫すれば解決できる。その技術で製造されたポリエチレンとパルプの複合材料は、ポリスチレンと同等の弾性率を有し、繊維形状のフィラーの配合された複合材料ゆえに脆さはポリスチレンよりも改善されるという特徴をもつ。フィルム状に押出成形を行えば、記録メディアとして使用可能である。

 

 

紙はセルロースの主要な用途だけでなく、プロセスから材料物性までセルロースの性質をうまく活用した製品と見ることができる。様々な紙の技術が登場しても、歴史のある薄く平らにパルプを絡み合わせて乾燥させた紙は、セルロース分野で優れた商品の位置を占める。

 

カテゴリー : 一般 連載 高分子

pagetop

2014.03/08 古くて新しいセルロース(2)

セルロース(繊維素)は、(C6H10O5)nという化学式で表される多糖類の一種であって、棉、木材、その他植物体を構成する細胞膜の主成分として、高分子量体のまま地球上に豊富に存在している。

 

空気中の炭酸ガスと水分から、太陽エネルギーを活用する光合成という光化学プロセシングにより自然界で大量に合成されている。ゆえに資源は無尽蔵といってよい。一年生草本などの植物のセルロース含量は、10-25%、木材では40-50%、亜麻、黄麻、大麻などでは60-85%であり、これらは重要なセルロース源として活用可能である。

 

セルロースという呼び名は、1840年頃木材から繊維状の物質が初めて単離されたときに、その物質につけられた呼び名で、今日では化学用語として定着している。

 

理論的には、あらゆる植物からセルロースを単離、抽出できるが、実用上は経済的要因に左右され、工業的に製造されるセルロース誘導体用のセルロース源としては、棉リンタおよび木材パルプの二つが主体となっている。そして紙、繊維、フィルム、プラスチック、塗料、接着剤、火薬などのセルロース化学工業用原料として活用されてきた。

 

最近はミドリムシからも多糖類が抽出され注目されているが、こちらはパラミロンと呼ばれる物質である。多糖類の工業材料としてセルロースは多方面で使用されてきたので天然高分子で大変な合成プロセスであっても価格はポリ乳酸よりも安価である。

カテゴリー : 一般 連載 高分子

pagetop

2014.03/07 STAP細胞の再現性(2)

昨日の産経新聞朝刊に理研がSTAP細胞の作成方法の詳細を公表した、という記事が載っていた。小保方博士が先月その再現実験手順を作成し、再現実験に成功した、という情報も同時に報じられていた。作成方法の公開記事よりも彼女が元気に実験手順を作成していたことを知りほっとした。

 

当方でも彼女の現在の状況で平常心による仕事ができたかどうか自信はないが、彼女は責任を全うした。相当強靱な精神力の研究者と思われ将来が楽しみなリケジョ(www.miragiken.com)である。現代の研究者にとって社会に受け入れられるかどうかは重要なことである。若い研究者のモラールを萎えさせることなく再現実験を即座に推進できるようにした理研の対応も立派、といえるだろう。そのような恵まれた環境で仕事をした経験がないだけにうらやましい限りである。

 

さて、昨日の記事には再現性のために重要な点として生後一週間を過ぎたマウスの体細胞では作成効率が大幅に落ちることや、細胞を浸す溶液の酸性の度合いが変化しやすいこと、雄マウスの体細胞の方が雌より効率の良いことなどが公開されていた。

 

これらはSTAP細胞作成のための制御因子である。おそらく制御因子の存在を十分に調査せず研究を進めてきた問題が今回の騒動を引き起こしたのだろう。また一方で、研究を独占する方法として、このような制御因子の詳細を研究者は公開したくないことも確かである。後者については、科学者には許されない我が儘であるが、時としてそのような研究者がいる。

 

但しこのような姿勢は研究者には許されないが技術者には許される。技術者はそれにより自らの立場を守ることができるからである。技術者が社会で長生きするためには、機能を創り出すまでのノウハウ(注)を公開せず、機能を実現する方法だけを提供することである。安定に繰り返し再現性が得られる生産システムを自ら開発し、それで社会に貢献すれば技術者の責任は全うされるのである。科学者のように全てを公開する責任を負わず、安全安心安定な技術を提供するだけで良い。そしてできあがった機能について科学的に保証すれば技術者の仕事は終わる。

 

科学者は真理を証明するために全てを公開する必要がある。もし公開せず技術者と同じ態度を取ったならば今回のような混乱を引き起こすだけである。科学者は全てを公開することで名誉を獲得できる。それにより新たな仕事を呼び込むことが可能になる。秘密主義の科学者に社会は研究費を提供しない。秘密の多い科学者は技術者よりも極めてリスクが高くなるからである。

 

おそらく彼女は今回見いだされた制御因子の詳細をご存じないのかもしれない。すなわち彼女の属人的スキルでうまくSTAP細胞を創ることができていたが、STAP細胞に関する科学的研究については山中博士が指摘されたようにこれからスタートする状況と言えるだろう。彼女はSTAP細胞の発見者として評価されるが、STAP細胞の研究者としては他の人が評価される可能性がある。

 

(注)ノウハウの一つが弊社で販売している研究開発必勝法プログラムである

(古くて新しいセルロース(2)は明日掲載します。)

 

カテゴリー : 一般 連載

pagetop

2014.03/06 古くて新しいセルロース(1)

合成セルロース系高分子は、他の合成高分子と異なり、モノマーの重合や縮合などによって得られるのではなく、天然の高分子であるセルロースを化学的にエステル化またはエーテル化することによって得られる種々のセルロース誘導体を主原料とし、これに可塑剤その他の添加剤を配合して製造される。セルロース自体は溶融せず、熱可塑性ではない。

 

しかしサランラップはじめ石油モノマーから合成されたフィルムの普及であまり見かけなくなったセロハンや、これも他の合成繊維の台頭で市場占有率が縮小したレーヨンなどのように、苛性ソーダと二硫化炭素でセルロースを処理後、酸性溶液中に押出して得られる再生セルロースは、他の熱可塑性高分子に似た性質も備えている。

 

かつてセルロースの化学を語るときには、セロハンやレーヨンを中心にまとめれば、それで興味深い読み物になった。また、石油系ラップフィルムと異なりセロハンには透湿性があり、石油系ラップフィルムで包むと湿気で食感の変化するお菓子や惣菜をおいしく包むことができ、そのフィルム物性について読者の興味を引く内容にまとめることができた。40年ほど前には、セルロースの化学は別名繊維素系樹脂として重要な合成高分子の一つであり、高校の化学の教科書にもそのような紹介がされていた。

 

 

時代が変わり、環境ビジネスが取りざたされる昨今、天然高分子としてのセルロースにも注目が集まっている。しかし環境適合性の劣るプロセスで製造されるセロハンやレーヨンは、もはや研究対象ではなく、高度な機能性高分子としてのセルロース、あるいは環境に優しいプロセシングで製造されるセルロースおよびその応用製品の開発が期待されている。

 

(日本化学会から依頼され「科学と教育」へ4年前投稿した論文を本日から連続で掲載します。)

 

 

カテゴリー : 一般 連載 高分子

pagetop

2014.03/04 有機無機複合ラテックス(3)

コアシェルラテックスを開発していた担当者とこの点を議論したが、不可能という回答であった。目の前に従来技術による理想的に混合されたマンガを書いて議論していたのだが、コロイド科学の知識を活用して見事な否定証明を展開した。

 

コアシェルラテックスと従来技術の比較を検討してくれたメンバーAをよび同様の議論をしてみた。すると、シリカゾルをミセルにしてラテックスを重合すれば良い、というアイデアが生まれた。すばらしいアイデアである。ゾルをミセルに用いたラテックス重合技術というのは当時誰も研究していない新規コンセプトであった。

 

この新規コンセプトについてラテックス重合を担当しているメンバーに話したが、やはり軽く否定証明でつぶされた。あまり軽妙に否定証明を展開してくれるので、コアシェルラテックス合成実験の全データをメンバーAに検討させたところ失敗した実験データの中から、ゾルをミセルにしたラテックス重合を実現できるヒントを見つけてくれた。

 

すなわちゾルをミセルにしたラテックス重合は、コアシェルラテックス検討過程の失敗条件から生まれた。さっそくメンバーAにラテックス重合技術を勉強させて、最適化検討を行ったところ、3週間ほどで、シリカゾルをミセルに用いたラテックスが完成した。驚くべきことに、このラテックス溶液にゼラチン水溶液を添加してもシリカゾルの凝集は生じなかった。

 

こうして従来技術の改良に成功し、できあがったゼラチンの性能についてコアシェルラテックスを用いた場合と比較したところ、2割ほど性能が優れていた。

 

ゾルをミセルに用いたラテックス重合技術が完成したので高分子学会賞に応募したら、審査会でそんなもの誰でも知っている、と言われ落選した。1996年のことである。その後ラングミュアという科学雑誌にイギリスの研究者によるゾルをミセルに用いたオイル分散の研究報告が載っていたが、そこには実験の成功は世界初と書かれていた。

 

カテゴリー : 一般 連載 高分子

pagetop

2014.03/02 有機無機複合ラテックス(1)

バブル崩壊直前に写真会社へ転職したころ、写真業界では脆いゼラチンを強靱化する検討がされていた。写真フィルムを現像処理すると、ゼラチンが水を吸って膨潤したときに割れやすくなり、その処理速度を速くすることができなかった。現像処理速度を速くするためには写真フィルムの感光層に使用されているゼラチンを強靱にする必要があった。

 

ゼラチンは水に膨潤すると柔らかくスリキズがつきやすくなる。それを硬くするためにシリカと呼ばれる無機微粒子が添加されていた。しかし、無機微粒子が添加されたゼラチンが乾燥したときにひび割れやすくなるので、それを防止するためにラテックスと呼ばれる柔らかい微粒子が添加されていた。

 

すなわち硬くするためにシリカを添加し、その結果さらに脆くなったゼラチンの物性を改良するためにラテックスを添加していた。ややモグラたたき的技術のようだが、このシリカとラテックスを併用する方法は10年以上の実績があり、感光層のバインダー技術として重要であった。

 

しかし、現像処理速度が速くなるにつれて、その技術では対応出来なくなり、ライバルの写真会社から、シリカをコアにしてそのまわりをラテックスで覆ったコアシェルラテックスという技術が登場し、超迅速処理技術として注目された。

 

コアシェルラテックスはシリカとラテックスが一体化されているので、ゼラチン水溶液に分散してもシリカの凝集が発生せず安定なコロイドを生成する。そのためプロセス上のメリットも大きかった。

 

このコアシェルラテックス技術はナノテクとしても注目され、高分子学会でも取り上げられた。単なるシリカの表面処理では無く、シリカの微小な表面上でラテックス重合を制御するという極めて高度なナノテクであった。またできあがったコアシェルラテックスは有機無機複合ラテックスでもある。(続く)

カテゴリー : 連載 高分子

pagetop

2014.02/25 おからハンバーグ(3)

おからハンバーグは、挽肉(牛肉100%)の量をおからの4倍程度使用すれば、通常のハンバーグとよく似た色で仕上がる。一般に販売されている豚と牛の合い挽きを使用した場合にはこの比率でも白っぽくなる。食品の色は味にも影響する。見た目がおいしさのために重要である。

 

挽肉の量をおからと同程度で肉のような色合いを出すには赤だしミソを使用すると良い。ハンバーグのレシピに味噌を入れた例を見たことはないが、このアイデアはおからハンバーグの開発過程で得られた面白い成果である。おからハンバーグ以外の肉料理に応用してもおいしくなる。味噌味が強くなると少々ハンバーグらしさがなくなるが、そこそこの味噌味は肉の味を引き立てる。

 

このアイデアの一番のミソはおからも赤だしも大豆から作られている、という点である。ご存じのように赤だし味噌は、岡崎市の特産品で大豆100%で作られている。おからとの相性は良い。ハンバーグの着色剤としても少量で黒っぽくなり使いやすい。

 

壊れやすさと色の問題は解決がついたが、ジューシー感は少し苦労している。ジューシー感をごまかすためにチーズ入りハンバーグというレシピも開発したが、やや邪道である。正真正銘のおからハンバーグと名乗れるようチーズが無くてもジューシーな雰囲気を出す手段をいろいろ工夫したが、残念がら現在のところ豚の背脂を使用するのが最もよく、その次は牛脂である。

 

一応これらを挽肉に混ぜて使用するとジューシー感を出せるが、動物性脂肪が多くなるので健康食品と詠いにくい。豆乳を試したりしてみたが今ひとつ。現在のところおからを炒るときに植物性油を使用する方法以外に良いアイデアが無いが、一応おからハンバーグとしておいしいレシピが完成した。もちろんおからハンバーグを作るときに用いる混練方法はカオス混合である。

 

カテゴリー : 一般 連載 高分子

pagetop

2014.02/23 おからハンバーグ(1)

おからは、豆腐の副生成物で産業廃棄物として扱われている。この有効利用を考えてきたが、グルコースや、ガラクトース、マンノース、キシロースなどの複数の多糖類の混合物であり、工業材料として使用しにくい。繊維素としてパルプのような使用方法も考えられるが、その精製にコストがかかりそうである。それと臭くなる可能性がある。

 

最も大きな問題点は8割が水分と言われており、乾燥のためのエネルギーが大量に必要となり、省エネが必要な昨今取り扱いの難しい材料である。しかしタンパク質や脂質の乾燥重量に占める割合が44%なので食品材料として捉えたときには滋養豊富な低コスト材料になる。そこでおからを使用した鶏団子や餃子などの開発を進めてきた。

 

WEBにもおから利用のレシピは多数公開されているが、いずれも作ってみると今ひとつの料理である。おからドライカレーはルーを工夫すればそこそこおいしい料理となるが、その他は昔ながらの卯の花程度が無難なレシピで、おからの特徴を活かした料理のレシピは少ない。

 

弊社で開発した鶏団子や餃子は、おからの特性を活かした料理で家族に評判が良い。しかし鶏団子や餃子は最初からそれをゴールとして目指した料理ではなく、おからハンバーグの開発過程で生まれた副産物である。すなわちおからハンバーグとしてはあまりおいしくなかったが、開発過程で得られた配合で鶏団子や餃子を作ってみたらおいしかったのでそれぞれをゴールとして最適化した副産物である。

 

おからハンバーグの一番の問題点は、その柔らかさである。次に色。味と直接関係ないこの2つの要素が実はおいしさのために重要である。鶏団子はホクホク感として利用すればおいしい団子になるが、ホクホクしたハンバーグはハンバーグではない。ハンバーグはぎゅう(牛)と噛んでジューシーな断面が見えることでおいしさが完結する。また見た目の色も肉の雰囲気を壊さない色が重要である。

 

おからを使用した場合には、色は白っぽくなり、食感はホクホク感は良い方で卵を多くするとぱさぱさ感となってしまいハンバーグのおいしさを出すことができない。(続く)

 

 

カテゴリー : 一般 連載

pagetop

2014.02/22 パーコレーション転移(13)

酸化スズゾルは、その合成条件を変えるとコロイドの分散状態が変化する。酸化スズゾルは1-2nm程度の一次粒子が金魚のウンコのように、繊維状につながった粒子として分散しているが、合成条件が変わるとこのウンコ状のつながりが枝分かれした形状になったり、網目のようになったり様々である。濃度が1-2%であれば繊維状が大半であるが濃度が上がって7%程度になると網目状につながった凝集体が観察される。


実用的には濃度の濃い粒子が必要だが、10%以上の濃度にすると短時間でゲル化するので塗布液として使いにくい。7%前後がポットライフも長く使いやすい。ところがこの7%前後の濃度では網目状の構造が多くなり、その結果粘度の制御が難しくなる場合がある。


粘度をコントロールできても網目状の構造のばらつきがパーコレーション転移に影響し、帯電防止性能のばらつきにつながる。厄介なのは、帯電防止性能に差があっても表面比抵抗に違いが見られないことがあるのだ。


すなわち帯電防止層の品質評価に表面比抵抗が使われるが、それで品質管理できない、という事である。しかし、100Hz以下のインピーダンスであれば、クラスターのでき方を検出できるので帯電防止性能の品質評価に用いることが可能である。また、タバコの灰付着距離とも相関するので、実技評価を省略できる。


現在パーコレーション転移シミュレーションプログラムを作りながら学ぶPython入門セミナーの受講者を募集中です。

PRセミナーについてはこちら【無料】

本セミナーについてはこちら【有料】

カテゴリー : 一般 連載 電気/電子材料 高分子

pagetop