活動報告

新着記事

カテゴリー

キーワード検索

2019.03/16 高分子の帯電防止技術

多くの高分子は絶縁体である。ゆえに静電気を防止する必要がある時には帯電防止処理を行う必要がある。最も確実な方法は、商品の表面比抵抗を10の11乗Ω未満とすることである。ただし用途によっては、この程度でも不足する場合があるので実技評価が欠かせない。

 

すなわち、帯電防止技術は、科学の知識だけで考えていると商品設計に失敗する可能性のある技術分野である。用途によっては表面比抵抗を下げなくても昔から知られている帯電列を調整する方法もある。

 

この帯電列は経験則から得られた。そして、いくつかは科学的に説明が可能だが、やはり所詮経験則である。帯電防止技術で難しいのは用途に応じた評価方法である。

 

電気的評価だけでなく、帯電防止処理の結果生じる副作用についてもチェックする必要がある。例えばブリードアウト。

 

そもそも、樹脂成形体を界面活性剤や樹脂添加剤で帯電防止を行う時にはブリードアウトすることが前提になる。すなわちカタログに帯電防止剤と書かれていてもブリードアウト速度が低い場合には十分な帯電防止効果が初期に得られない。

 

時間がたてばブリードアウトにより帯電防止性能が出てくるが成形直後の評価では帯電防止性能が得られない。カタログに帯電防止剤と書かれているので添加量不足と考え量を増やすと知らず知らずのうちにブリードアウトの問題を抱え込むことになる。

カテゴリー : 電気/電子材料 高分子

pagetop

2019.03/08 3月末開催高分子の難燃化セミナー

この3月末に高分子の難燃化セミナーを企画しているが、新技術について公開しようか迷っている。いくつかアイデアを中国で試してみて可能性を確認しているが、特許を書いていない。一部基本特許をあるメーカーから出願し先日公開された技術もあり、それは今回のセミナーで初公開となる。

 

判断で悩んでいるのは、特許を出願していない技術である。これは中国のコンパウンドメーカーにも教えていない方法でまだ実用化されていない。しかし、幾つかの現象を組み合わせると新しい難燃化機能が見えてくる。

 

難燃化技術は、科学の世界ではとらえきれない技術であり、元名古屋大教授武田先生もその難しさについて語っている。科学では難しくとも人類は経験で、ハロゲンとアンチモンの組み合わせやリン系化合物を見つけてきた。燃えるイメージの赤燐さえも難燃剤になるのだ。

 

高分子の難燃化技術で難しいポイントは、難燃剤を高分子にどのように均一に分散するのかという問題である。すなわち、難燃剤成分の分散プロセスがその機能発現に影響する。難燃剤を使わないで可燃性高分子を難燃化する技術もセミナーで紹介するが、この技術は難燃剤の分散というプロセスから解放された技術である。

 

従来の高分子の難燃化セミナーとは少し異なる視点で、科学で対応できない技術にどのように取り組んだら良いかと言う問題解決法的な要素も講演しようと考えている。ご興味のある方は弊社へ問い合わせてください。3月29日に東京で開催します。

 

 

<セミナーのご案内>

日時 2019年3月29日

場所 大井町きゅりあん

<内容>

高分子の難燃化を科学で体系化するのは難しいですが、アカデミアのチャレンジ結果も出そろい経験からおおよその体系が見えてきています。混練技術にまで遡及し、経験知による体系を提示します。

カテゴリー : 一般 学会講習会情報 電気/電子材料 高分子

pagetop

2019.02/28 PPSと6ナイロンの相溶技術(8)

ミッドレンジの複合プリンターの中間転写ベルトには、一般にポリイミドが使用されている。理由は、ベルトの周方向の抵抗ばらつきに対して厳しいスペックが定められているからだ。

 

ポリイミドのベルトは溶媒キャスト成膜で製造するので、周方向の抵抗安定化は容易だった。これをPPSの押出成形で作ろうとすると強度の問題以外に周方向の抵抗安定性を管理する技術が必要になる。

 

強度の問題については6ナイロンを添加して靭性を高めることができたのだが、その代わり、6ナイロンの島相が動く問題が生まれ、抵抗安定化が難しくなった。

 

6ナイロンをPPSに相溶させれば強度と抵抗安定化の両方の問題が解決するのだが、フローリー・ハギンズ理論から、その考え方は科学的に否定される。

 

ところで自然現象に潜む機能には、科学的に不可能であっても技術で実現できる場合がある。そもそも非平衡状態で行われる生産で発生する問題を科学で忠実に考えようとする姿勢がおかしい。

 

しかしこのようなおかしさについて意外と気がつかないものである。現場で発見した現象を現場で再現させて、それをモデル化して改めて問題を考え直す作業は、それが非科学的であっても、また、たとえ思いつきであっても新たな技術を創り出すには良い方法である。

 

思いつきの技術を否定される方もいるが、形式知や経験知、暗黙知に裏付けられた思いつき技術であれば、科学技術に匹敵する。時には、この中間転写ベルト生産技術のように科学技術の成果よりもロバストが高い場合もある。

 

当然のことだが、なんら知識の裏付けのない思いつきは、技術と呼べない。正真正銘の妄想である。単なる妄想かあるいは知識に裏付けられた崇高な思いつきであるかの評価は、科学第一主義では、全部妄想に見えてくるから注意が必要である。

 

ゴム会社の新入社員時代に2ケ月現場実習を体験しているが、これは貴重な財産になっている。科学では説明できない数々の現場の技術を目にしたとき、科学とは何かという疑問がわいた。

 

一方そのような現場を見て、非科学的な技術があふれた会社を否定し、転職して会社の社長にまでなった人物がいる。技術が科学的に開発されることが最重要という価値観の社会では当方の様な考え方は受け入れられにくいが、科学を前面に出せば容易に評価される。

 

しかし、中間転写ベルト実用化過程で開発されたカオス混合装置は、科学的というよりも経験知と暗黙知の具現化された技術であることをあえて力説したい。そのような技術でもトラブルなく20年近く安定に稼働している。

 

同様に試行錯誤で完成したフェノール樹脂とエチルシリケートのポリマーアロイを前駆体として用いた高純度SiCの事業は30年続き、昨年暮れに名古屋の会社に事業移管された。また、この技術の概念はアカデミアでも受け入れられ、同様の手法で新しい材料を生み出している研究者も出てきた。これらに限らず当方の開発成果には非科学的な成果が多い。

 

ただし、新しいモノを創り出すときには非科学的ではあるが、できたモノの解析は科学的に行うのが当方の開発スタイルであり、学位論文はその科学的成果をまとめたものである。

 

過去の雑誌「機能材料」に、2ケ月間連載で当方の学位論文の要約版が掲載されている。当方の学位論文をどなたかが編集者に推薦してくださったようだが、光栄なことである。今の時代学位論文は大量に生産されているが、このような栄誉は数少ないと思う。

 

 

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2019.02/24 PPSと6ナイロンの相溶技術(7)

コンパウンドを外部から購入しなければいけないという制約があったので、子会社の空き地に工場を建てられるように交渉を始めたら、運が良いことに豊川の近くの袋井の子会社に空き地があるという。

 

下見をしたところ、二軸混練機を2ライン置ける広さの空き部屋が偶然見つかった。その部屋の図面をもらい、形状だけ写し取って、根津にある中小企業の社長にお願いして、埼玉にその写しの形状と同じ広さを取れる空き工場を探してもらった。

 

埼玉の空き工場に、中古の二軸混練機1台設置し、ラインを組み始めた。1ケ月ほどでカオス混合ラインは完成した。そのかわり土日の休日は全部潰れるとともに、新幹線代が個人負担になった。

 

このあたりを細かく書くと愚痴しか出てこないので、ここでやめるが、問題解決の方法が見つかっても組織の協力が得られない場合には、このような個人の犠牲を払うのか、問題解決をあきらめるかの選択になる。

 

犠牲を払ったとしてもサラリーマンとして報われないことが分かっていたが、世界初のカオス混合ラインという魅力に自腹を切る覚悟をし、新たなテーマ企画をDRにかけて審議してもらった。

 

秘密の混練ラインで生産したコンパウンドを用いたところ、リサイクルコンパウンドよりも歩留まりが向上し100%に到達した。しかし、最初の企画提案で行ったDRの資料には、押出成形工程で作ったコンパウンドのデータを用いて説明している。そして、この押出成形工程を子会社の敷地にコンパウンドラインとして作り上げ3ケ月で完成させるシナリオを審議してもらった。

 

コンパウンドの生産ライン建設に本当はどれだけかかるのか知っている人などいないので、無事この企画は通過した。センター長は8000万円の設備投資を許可してくれた。この設備投資の許可を受けて、二回目のDRでは、カオス混合プロセスによる本格的なコンパウンドライン建設提案を行っている。(続く)

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2019.02/23 PPSと6ナイロンの相溶技術(6)

ゴミベルトが15kgほど集まったところでそれをハサミで切り刻み粉砕しコンパウンド代わりにベルト生産を行ったところ、歩留まりが一気に80%を超えた。

 

歩留まりが悪いので廃材リサイクルのテーマが以前から上がっていたが、それの見通しが立った、と部下の課長は喜んで今後のテーマについて話してくれた。その話をひっくり返すようで申し訳ないが、ベルトの製造ラインを使ってコンパウンドを生産しようと思う、と話したら、冗談でしょうとなった。

 

さらに、コンパウンドメーカーにお願いし、ここで使っている金型を混練機に取り付けてコンパウンド生産をしてもらおうと思っている、と続けたら、コンパウンドメーカーは承知しないでしょう、という回答が課長から返ってきた。

 

コンパウンドメーカーの担当者は承知しないだけでなかった。実際にコンパウンドメーカーとの打ち合わせの席でその話を出したら、コンパウンドメーカーの技術者から、素人は黙っとれ、と言われたのだ。

 

仕方がないので、自分でコンパウンド工場を立ち上げてコンパウンドを内製化しようと考えたら、部下の課長から、このテーマは外部からコンパウンドを購入して進めるようにDRで決まっている、とアドバイスがあった。

 

課長は真面目な人間で、堅実な仕事の進め方をしていた。歩留まり10%以下で、リサイクルコンパウンドを使えば、コストダウンが可能だという。しかしPIを用いたときよりもそれは少し改善できる程度だった。

 

彼は、それでも大きな進歩だという。量産開始までの残された時間を考慮すると、コンパウンドの生産など経験のない企業では内製化という判断は非常識だった。しかし、歩留まり10%以下の状態で量産を開始するというのも情けない。

 

リサイクルコンパウンドで歩留まりが80%を超えるならば、それを内製化コンパウンドにする考え方もある。コンパウンドメーカーが押出金型を二軸混練機に取り付けるのを拒否するのであれば、自分たちでそのようなラインを立ち上げれば問題解決できる。(続く)

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2019.02/21 PPSと6ナイロンの相溶技術(5)

DSCの測定結果が出るまでに、金型の図面を精査した。詳細はここにかけないが、PETフィルムに用いるTダイと明らかに異なる構造が多数存在した。

 

担当者に説明を求めると6年間の開発成果だという。すなわち、コンパウンドに問題があるにもかかわらず、金型の改良で問題解決してきた結果だった。

 

担当者は、それぞれの改良ポイントを科学的に説明してくれた。もし、歩留まりが80%を超えていたならば、その説明は称賛されるような素晴らしい内容だった。

 

担当者の科学的に完璧な説明に関わらず、現実には歩留まりは10%以下と散々な状態である。6年間科学的に金型改良を進めた結果は、半年後に生産を控えている状態ではなかった。

 

それでも担当者は、改良した瞬間はその効果が現れた、と胸を張っていた。どうやらコンパウンドのロットが変わると改良効果が消えるので、コンパウンドのロットが変更になるたびにモグラたたきのごとく改良を進めてきたようだ。

 

「科学的に完璧な説明」については、転職の原因になった電気粘性流体の開発にかかわったというトラウマがあった。担当者の説明にむなしさを感じながらも表情には出さないように配慮した。

 

中間転写ベルトという複写機の部品で一番重要なスペックは、周方向で均一な電気抵抗になっている必要があった。それも10の10乗Ωという導電性カーボンで実現するには中途半端な値である。この値を実現するにはパーコレーション転移という現象を安定に制御する技術が必要だった。

 

詳細は省略するが、カーボンの分散が究極のレベルまで実現されておればカーボンの添加量に相当する抵抗となるが、分散が中途半端であるとプロセスの途中で分散が進み、抵抗が変動することになる。

 

金型の改良の歴史は、それを意図してはいなかったが、視点を変えると分散を進める様な工夫に見えた。その工夫の中で、カオス混合に相当する分散を実現できるような工夫があった。すなわち、その工夫を一つの機能性部品として捉え、二軸混練機に取り付ければ、汎用の二軸混練機を用いてカオス混合が可能になる、と考えた。

 

DSCのチャートを見て、歩留まり向上の問題解決方針ができたことを確信し、生産の最後に毎回行われる、速い押し出し速度によるシリンダー清掃で得られるゴミベルトを収集するように指示をだして東京へ帰宅した。

 

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2019.02/16 PPSと6ナイロンの相溶技術(3)

無端ベルトの押出成形は、リップ部が円形のダイで行う。ベルトの内径を決めるため、冷却用のサイジングダイがリップ部の近くに取り付けてある。

 

このあたりはノウハウになるので詳細を書けないが、PETの成膜で用いるTダイとは少し構造が異なる。

 

写真会社ではフィルム開発を担当していたので、押出成形についてそれなりのスキルを持っていたが、無端ベルトの押出は、ダイの形状も異なるので現場に入る前に少し勉強していた。

 

ゆえに押出速度を早めているのに音の高さが低音側に変化するのは、ダイの構造から考察すると異常な現象ではないかとすぐに疑問がわいた。

 

押出速度が早めたためにPPSの結晶化が起きなくなった、すなわち非晶質PPSのまま安定に押し出されている状態は、ダイの構造以外に全体のプロセスから考えても説明がつかない。

 

ただ一つの現象として、それを説明できるのは非科学的ではあるがPPSと6ナイロンが相溶し非晶質状態で安定化している高次構造のベルトができている場合だ。

 

 

(月曜日に続く)

 

 

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2019.02/15 PPSと6ナイロンの相溶技術(2)

中間転写ベルトの押出成形の現場でボーっと眺めていたら、突然工場内の騒音の音色が変わった。

 

この音色の変化に対して当方が敏感に対応できたのは、自宅で仕事をするときに、いつも音楽を聴きながら仕事をしていた習慣のおかげである。

 

金属音が中心の高域成分の多い工場内の騒音が、ボムボムという低域成分の多い音に変わった。イメージとして寺井尚子からロンカーターに変わったような感じだ。

 

この音の変化の原因は、一日の規定の生産本数を終了し、単軸押出機のシリンダー内に残ったコンパウンドを押し出したいために、押出速度を早めたからである。

 

PPSというポリマーは結晶化しやすいので、生産時の金属音はベルトが押出されて冷却後一本一本採取されるときや、押し出し後断裁されるときのほんの一瞬力がかかる時に出ている。

 

生産終了後は、一本一本丁寧に採取はしていないが、適当な長さになるとはさみで乱暴に切り取っている。すなわち、生産終了後のほうが本来金属音がうるさくなってもよいような状況だ。

 

本来騒々しくなってもよいような状況で、逆に金属音が無くなり落ち着いた音質に変化していた。現場の人たちはこの変化を日常の変化として慣れっこになっていたが、当方には大変不思議な変化に思われた。(明日に続く)

 

 

 

 

 

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2019.02/14 PPSと6ナイロンの相溶技術(1)

先日小鯛の笹漬けの話を書いたら質問が届いた。質問の内容はマンペイさんの即席ラーメン以外に具体例はあるのか、という質問である。

 

当方の開発した技術は、ゴム会社で30年間事業が続いた高純度SiCの技術はじめ多くの技術は、試行錯誤による独創の成果である。思いつきと言ってもよいような技術もある。

 

非科学的な表題の技術も、当方の営みから生まれた思いつき技術の一つである。以前この欄で紹介しているが、この技術は、豊川へ単身赴任が決まり、単身赴任先の下見のため現場でボーと中間転写ベルトの押出成形を眺めていて思いついた技術である。

 

PPS中間転写ベルトという技術テーマは、写真会社が他の会社と統合されたときにお荷物テーマの一つだった。

 

このテーマに終止符を打つことを期待されて当方が前任者から技術リーダーを引き継ぐ役目として研究所から派遣された。

 

その状況は、このテーマが成功し生産が始まったときに、本来研究所で開発が終了していなければならなかった技術が完成していなかったために中間転写ベルトの生産に影響を与えていることからも明らかである。

 

すなわち、当方が開発に失敗しテーマが終了することを見込んで、研究所の担当者は中間転写ベルトに必要なある技術の開発テーマを中断していた。

 

しかし、当方が技術開発に成功したものだから、慌てて開発を再開したが、基盤技術が完成したと言われているのに納期に間に合わなかった。このあたりには**技術ゆえに悲哀あふれる笑い話があるが、他人の技術なのでここで書かない。

 

ところで、表題の技術は中間転写ベルトの現場観察で生まれているが、何故6年近く誰も技術アイデアを思いつくことができなかったのか。

 

それは非科学的な現象だったからだ。フローリー・ハギンズ理論という少し適当な、それでいて重要な理論が高分子の教科書に載っており、この理論で表題の技術は否定される。

 

当方がノーベル賞学者の理論に対して懐疑的に見ている理由については、以前この欄に書いているが、少なくとも実際の生産における非平衡状態においてはこの理論を適用するのは技術開発の障害となる。(明日に続く)

 

 

 

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2019.02/09 技術開発経験談(16)

高分子の燃焼試験機として自動酸素指数測定装置が販売されていた話を以前書いている。最近そのような装置が販売されているか知らないが、この装置は素人の願望を実現したような装置だった。

 

ポリウレタン発泡体のLOIは、この装置で測定できなかったが、発泡体をプレスし密度をあげた形状にすれば、この装置で測定可能となった。

 

このサンプルの状態で計測して、誤差が0.5程度の精度で自動計測できる機械だということを理解できた。ただし、この装置で同じサンプルを手動で計測すると、誤差は0.25程度であり、計測時間も20%程度短くなった。

 

すなわち、自動計測は精度を高めるため、と説明書に書いてあるが、そのため各種部品が一般の酸素指数測定装置よりも高精度の部品が使われ手動によりさらに精度を上げられたのだ。

 

するとこの装置の残るメリットは酸素指数法という評価技術を理解していない素人向けという点だけである。

 

研究開発部門でこのような装置を導入していることにびっくりしたが、せっかく手動計測できるように改良したのに自動測定で行え、と指示が出たことでさらに驚いた。

カテゴリー : 一般 連載 電気/電子材料 高分子

pagetop