活動報告

新着記事

カテゴリー

キーワード検索

2023.07/17 高分子と火災と評価技術(4)

高分子の不燃化は難しいが、燃えにくくする技術ならばできそうだ、と1970年前後の高分子材料の研究者は考えた。そして高分子の難燃化技術の開発がそのころから活発になるのだが、「燃えにくく」する技術の評価をどうするかが議論された。


1971年に書かれた書籍には、LOIに関して触れられていない。空気中で実際に燃焼させてそれを観察する評価技術が中心だった。


そのころ、燃焼とは急激に進行する酸化反応なので、どのくらいの酸素濃度で継続燃焼できるのか、という指標が科学者達から考えだされたばかりである。


1995年にJIS化されているが、当方は1977年にスガ燃焼試験機を使用し、PVAフィルムのLOIを測定している。その時PVAフィルムの燃焼速度が速いために使用法に書かれた条件では測定が難しかった。


点火器の炎の大きさなどを工夫し、測定可能な条件を見出して、燃焼を継続可能な最低限の酸素濃度を求めることができた。その同じ条件で、新規反応型難燃化剤で変性されたPVAについてLOIを測定したところ、添加量に対して線形性の高い関係が得られた。


LOIの測定法について書かれた論文には、ろうそくの炎のように燃焼、と書かれているので、測定法の工夫は、どのようにそのような燃焼条件を実現するのか、がコツとなる。


東日本大震災ではキャンドルアートが話題になり、最近再度そのアーティストが話題になっているが、規格に準じた測定において測定不能となるサンプルのLOI測定には、ちょろちょろと美しく継続燃焼できるように調整するアーティスティックなテクニックが重要である。


規格に準じて評価し測定不能と結論を出すのも良いが、実験の目的によりどうしてもLOIを知りたい時がある。その時には、規格外の方法であっても測定可能な条件があることを知っておいてほしい。


LOIは、ろうそく燃焼法として書かれた時代もあった。規格に準じて測定を行うことは大切だが、測定不能であっても工夫して測定値を求めると、タグチメソッドの基本機能として使用可能である。

カテゴリー : 一般 高分子

pagetop

2023.07/14 高分子と火災と評価技術(3)

火災と言う現象と高分子材料について研究するテーマは、どれもトランスサイエンスとなる。しかし、うまくテーマ設定して科学的結論を出せるような雰囲気も感じたりする。


実はこの感覚が、誤った評価技術を生み出したりする。むしろ、トランスサイエンスを前提に評価技術を開発したほうがアウトプットを間違えないと思っている。


このあたりの感覚をお伝えすることも難しいかもしれないが、高分子の難燃化技術は、ほとんどが経験知ぐらいに思っておいた方が研究を進めるときに誤った結論に陥る確率を小さくできる。


例えば極限酸素指数(LOI)はJIS規格が存在し、大抵の材料についてこの規格に準じて測定すればおよそ0.5程度の偏差で再現よく求めることができる。ところが、規格に基づき測定すると測定不能となるケースがある。


この時、科学の姿勢としては測定不能とするのが正しい姿勢である。LOI以外の難燃性評価規格にも測定不能となる規格が存在する。しかし、これでは研究開発を進めることができない。


難燃性高分子の開発では、測定不能であってもその難燃性を何とか数値化したいという場合が多い。難燃性評価規格もそのために作られているのだが、例えばフィルムや発泡体のLOI評価では、多くの場合に測定不能となる。

カテゴリー : 一般 高分子

pagetop

2023.07/11 高分子と火災と評価技術(1)

未だにテニスのボールガール問題がニュースになっている。これは失格とした判定を厳しすぎると誰もが思っているが、それを審判団が無視しているからである。また、無視していても審判団の非を責めるルールはない。


テニスではないが、広末夫人の不倫問題もくすぶったままだ。毎日のようにネットニュースになっている。この問題は週刊誌が報じたときに当人は全否定したのだが、その後状況証拠がニュースとして報じられ、今は不倫問題と言うよりも熱愛問題として報じられている。


テニスのボールガールの問題は誰もが現場を映像で見たのだが、不倫問題は週刊誌記者も含め誰もその現場を見ていない。かたやルールブックに記載されていないのでいつまでもくすぶっているのだが、不倫問題はマスコミが報じれば報じるほどますます燃えさかるような状況となっている。


実は高分子と火災の問題は両者の様子がごちゃ混ぜになったようなどろどろしたトランスサイエンス問題だ。出火元が分かっているならば、そこに用いられていた高分子材料が規格通りの適切な品質だったのか議論がなされる。


しかし、その後の議論が煮え切らないものになることが多い。それで、民間の保険会社が作ったUL規格が電化製品で使われるようになった。


一方出火元の目撃者が無く、燃え盛る火の手を早く消してほしいと願っても一度大きくなった火は、それなりの時間をかけないと消すことができない。そして火が消えてから、最も焦げていたところが出火元と判定される。誰もそこから火が出たことを見ていなくとも、である。


燃え盛る映像や、消火後の結果から火元を推定する方法が科学的に正しいのか知らないが、経験的に納得できるということで皆が信用している。


ゴム会社で初めて高分子の難燃化技術を担当した時に、このようなトランスサイエンスの分野であることを学生時代に知っていたので少しでもアカデミックに研究できるよう努力した。


昨日のらんまんで徳永助教授が学生を諭した、「どうやってここに来たかは問わない。だが、そこから変わっていけるかどうかだ」という名言がネットで話題になっている。


嫌な仕事でもどうやってそれを自己実現に結び付けて、そして社業に貢献するのかが大切とドラッカーにかぶれていたので高分子の難燃化技術研究のテーマを前向きに推進したが、この徳永助教授の名言を話題としたニュースの方がボールガールや不倫の話題をいつまでも流すより健全だと思う。

カテゴリー : 一般 高分子

pagetop

2023.06/22 高分子の破壊と劣化セミナー

7月5日に日刊工業新聞主催により表題のセミナーが開催される。(https://corp.nikkan.co.jp/seminars/view/6553

高分子の破壊と劣化については、金属やセラミックス同様に1970年代まで線形破壊力学として研究されてきた。当方が社会人となった時に、その研究方向の雲行きが怪しくなってきたときである。


その3年後にセラミックスフィーバーが起き、セラミックス分野では破壊と劣化に関する研究が急速に進歩した。これは、当時高効率ガスタービン開発を目標としたムーンライト計画の寄与するところだが、信頼性工学も導入されて、いすゞ自動車は世界初のオールセラミックスエンジン車の開発に成功している。


セラミックスアスカがその車で、その疾走する姿を映し出した「日本の先端技術」と言う番組は、日本中の技術者が視聴した。そのナビゲーターだった当時慶応大学学生宮崎緑氏は一躍技術者の憧れのマドンナとなった(あれから40年過ぎているので—。)。


また、セラミックス事業を行っていないメーカー1000社近くが新たにセラミックス市場に参入している。当方の在籍したゴム会社も高純度SiCを武器に半導体治工具事業へ参入し30年事業が行われた(今は愛知県にあるセラミックス事業の会社MARUWAに事業譲渡された。)。


セラミックスや金属では線形破壊力学の延長線上で形式知が体系化され、御巣鷹山の飛行機事故の裁判では、判例にフラクトグラフィーが使用されている。


ところが高分子材料の破壊と劣化問題については未だトランスサイエンス領域の学問である。日本におけるマテリアルズインフォマティクスの黎明期に線形破壊力学を持ち出し、高分子の破壊を説明していた学者がいたが、この分野の研究について無知な学者と言いたくなるような講演を行っていた。


さて、7月5日のセミナーでは、当方がSiCの破壊について研究した成果も含め講演する。すなわち改めて材料の破壊の歴史的背景から丁寧に説明し、実務でどのように対応したらよいのか、当方の体験を基に解説する。


実務で高分子材料を扱っている技術者は是非この機会に受講していただきたい。そこでは、某大学の先生のご指導を受け、アーレニウスプロットで考察を行い寿命予測した高分子材料の機能部品でとんでもない品質問題を起こした事例を紹介する。


この問題を当方が1か月程度で火消を行った自慢話となってしまうかもしれないが、実務の参考になる事例と思っている。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2023.06/21 コンパウンディングの不思議

カオス混合装置についていろいろと実験をしてきた。その中で配合が同一でもカオス混合の有無で全く異なる物性のコンパウンドが製造されることに注目している。

すでに本欄で書いてきたが、プロセシングの影響を受けるので配合組成と高分子物性は1:1対応の相関をしない場合がある。しかし、高分子の高次構造と高分子物性とは1:1の相関をすると説明してきた。

ゆえに、カオス混合装置使用有無で異なる物性のコンパウンドが得られる理由は、カオス混合装置で高分子の高次構造が変性されているからと説明できる。

しかし、このような説明は一般の二軸混練機の混練能力が不十分であることも示している。このような話をゴム技術者に話すと同意が得られるが、樹脂技術者の中には異を唱える人がいる。

もっとも、数十年前の古い論文にバンバリーとロール混練において、ゴムの繰り返し引張耐久試験におけるロール混練時間の問題を議論していた研究があるので、カオス混合装置の取り付けにより、二軸混練機単体よりも混練が進行する事実を説明できる。

それでもなお異を唱えた部下がいたので、カオス混合装置を取り付けない二軸混練機で4回ほど混練したコンパウンドと1回しか混練しなかったコンパウンドの比較を行い、混練回数が進行することにより動的粘度の周波数依存性が小さくなることを示して納得してもらっている。

この時カオス混合装置を取り付けた二軸混練機では、たった1回の処理で4回処理した場合よりも混練が進行していた結果が出ている。

カテゴリー : 一般 高分子

pagetop

2023.06/14 ポリマーブレンドでできる相

2種類以上の高分子を均一に混ぜたポリマーブレンドあるいはポリマーアロイについて考察するときにχが用いられる。χ>0の場合には2相以上に分離すると言われている。相の数は混ぜた高分子の種類の数となる、と言うようなことが一般的にいわれている。


教科書にはこの見解が正しいような説明がフローリー・ハギンズ理論として説明されている。一方1種類の高分子だけでも細かく見ると幾つかの構造が存在する。


結晶性高分子であれば、結晶相と非晶質相の2相が少なくともできるが、結晶相はラメラの集合体であり、多少の非晶質相を含んでいることが分かっている。


高分子の非晶質相は、無機材料の非晶質相と異なり、密度が不均一である。最も密度が低い部分で室温において得られるエネルギーで分子運動している相は自由体積あるいは部分自由体積と呼ばれている。


1種類の高分子でもこのように複雑なので2種類以上のポリマーブレンドではさらに複雑になる。力学物性では遭遇する機会が少ないが、それでも同一組成でありながらプロセス条件が異なると異なるSSカーブとなるケースが観察されることがある。


電気電子物性になるとその頻度は高いはずなのだが、測定パラメーターが直流の体積固有抵抗だけであるとばらつき程度に考えて深く追求しない。


18年前に中間転写ベルトの開発を行っていた時にインピーダンス測定を行っている。どのような測定を行ったか秘密であるが、その時面白い現象を発見している。


この発見は、中国ナノポリスでローカル企業が電子部品の外装材を開発している時にも類似と思われる現象の解釈に役立った。同じ高分子素材を使用していてもローカル企業のコンパウンドが優れた特性を示したのだ。ご興味のあるかたはお問い合わせください。


今日の話題は、今の科学の体系では典型的なトランスサイエンスの問題と捉えることもできるが、そもそも50年前とそれほど変わらない内容の高分子材料に関する教科書にも問題があるように感じている。


高純度SiCの反応速度論を中心とした学位論文を書いているが、無機材料の視点で高分子材料を眺めてみると、LGBTの問題以上に複雑な問題が見えてくる。

カテゴリー : 一般 高分子

pagetop

2023.06/13 材料設計

金属材料やセラミックス材料の設計には相、細かくは結晶に着目して配合組成を設計する。それでは高分子ブレンド(以下ポリマーブレンド)あるいはポリマーアロイの設計の実情はどうか。


ポリマーブレンドの高次構造の相に着目して設計するところは金属やセラミックスと同じように見える。しかし、そこから先が無いのだ。ポリマーブレンドでは相といっても金属やセラミックスのように結晶相ではなく、ブレンドに用いたポリマー種が構成する複雑な相である。


フローリー・ハギンズ理論はこの時重要な理論として50年ほど前から専門の教科書に登場していた。当方の時代には、この理論が1行も登場しない高分子の教科書が存在した。


40年ほど前からそのような教科書は無くなり、説明の量の違いが教科書の特徴となっていた。すなわち、高分子物理の教科書ではフローリー・ハギンズ理論の解説が数ページに及ぶが、高分子合成に関する教科書では一言である。


高分子材料設計の教科書では、おそらく1ページ以上を割く必要があるかもしれない。この理論の解説は難しいというよりも悩ましい理論ゆえに、そこを正しく説明しないと新しい技術の発展を阻害することになるためである。


さて、金属やセラミックスでは結晶相に着目して材料設計が成されるのだが、ポリマーブレンドではポリマー種の結晶相まで考えないことが多い。


樹脂補強ゴムの開発を行ったときも同様であり、当方の書いた報告書では、樹脂の結晶相の割合が樹脂補強ゴムの弾性率を制御しているという結論が新発見として評価された。


架橋密度でゴムの弾性率を制御できることは公知だったが、耐久性も十分見込まれた実用化できたゴムでは、架橋密度よりも樹脂の結晶化度のほうが寄与が大きかった。


注意しなければいけないのは、ブレンドしたすべてのゴムを対象としていない点だ。耐久性も十分にあり、実用的にゴムとして利用可能な樹脂補強ゴムについてである。このようなゴムでは樹脂相は必ず海相となっていた。

カテゴリー : 一般 高分子

pagetop

2023.06/10 PPSと6ナイロン(2)

半年後に中間転写ベルトの生産歩留まりを100%にしなければいけない状況で、コンパウンド工場を基盤技術0の状態から立ち上げるには個人の力だけでは不可能だ。

 

生産用の二軸混練機を導入するだけでも新品であれば発注から半年以上かかる。発注するための社内手続きでも最低1か月以上かかる。高額であれば役員会の承認も得る必要があって常識的判断をしたならば諦めることになる。

 

この時のセンター長は腹の座った人で、単身赴任したての小生が、早期退職の覚悟でこの仕事を引き受けたこと、コンパウンドの開発から行わない限り半年後も歩留まりは今のまま、と説明したら、8000万円で何とかしろ、と決断している。

 

8000万円では新品の二軸混練機も購入できないので中古機で量産ラインを立ち上げることが決まり、サプライチェーンの問題からQMSに登録されていない子会社を間借りする方針までその日にすぐに決まっている。あとは成功させるだけである。

 

中途採用の若者といかにも頭のキレがよさそうな職人二人をメンバーとしたプロジェクトでカオス混合のプラント立ち上げを始めたのだが楽しかった。

 

3か月ほどでラインが完成したので、まずPPSと6ナイロンだけのコンパウンドを混練している。カオス混合装置の吐出口から透明な樹脂液が出てきたときに、中途採用の若者は腰を抜かした。彼は高分子科学をよく理解していたので採用したのだが、期待通りだった。

カテゴリー : 高分子

pagetop

2023.06/09 PPSと6ナイロン(1)

PPSと4,6ナイロンの相溶を証明したのは東工大扇沢研究室である。PPSへ4,6ナイロンが配合された混合物を二枚の反対方向に回転するガラス円盤に挟んでその場観察する実験を行っている。

 

この実験でコンパウンドは300℃になると周辺部が透明になる。円盤の周辺部は、中心部よりも剪断速度が速いので、この観察結果は、剪断速度があがるとPPSと4,6ナイロンが相溶することを示している。

 

PPS/6ナイロン/カーボンの配合によるコンパウンドで中間転写ベルトの押出成形を担当することになった15年以上前にこの論文を読んだ。

 

そして、半年後に当時の歩留まり10%未満だったベルトの生産をカオス混合によるコンパウンドで100%にできる確信をしている。

 

フローリー・ハギンズ理論によれば、2種のポリマーブレンドが相溶する条件はχが0にならなくてはいけないので、この確信は自信というよりも東工大の研究結果を信じて教科書を否定するぐらいの度胸が必要だった。

 

カオス混合によるPPSと6ナイロンのブレンドではχが0でなくても相溶し透明になってくれたのだが、予備実験も研究も何も行わず生産ラインでこの現象をいきなり確認しようとしたのは無謀といってもよい。

カテゴリー : 高分子

pagetop

2023.06/08 高分子の劣化

金属やセラミックスの劣化機構とその予測に関して、科学でほぼ説明できるレベルにあり、御巣鷹山の飛行機事故についてはフラクトグラフィーを用いた解析で、圧力隔壁の修理不適切な部分からの疲労破壊が原因だったことも裁判の判例として残っている。


同様のことが高分子材料で起きていたらおそらく判例のようにうまくまとまらなかったのではないか。例えば、10年以上前に複写機外装材のボス割れについて明らかにコンパウンド起因と技術的に解析できたが、科学的証明が困難だった。


コンパウンドメーカーと議論しても平行線となって結論が出ず、現場監査となって混練機の温度管理が不適切でスの入ったペレットを生産していた現場を動かぬ証拠とした。しかしそれでもコンパウンドメーカーは科学的な証明ができていない、と主張していた。


この問題は、科学的になかなか結論が出せず、結局混練プロセス管理の徹底によりスの無いペレットを納入することとして幕引きとなった。


その後ボス割れが発生していないことから、技術的に予想されたスの入ったペレットが原因だったことの証拠と思われたが、それでもコンパウンドメーカーは非を認めなかった。


高分子成形体の劣化の場合に、コンパウンド起因と科学的に説明が難しい理由は、高分子材料について科学的に完璧な記述が難しいことによる。


溶融状態の高分子科学についても未解明な現象がまだある。それが成形体となってもその成形体物性を科学的に完璧に説明できない。これに時間の要素が加わった高分子の劣化問題について、科学の研究は易しいが実務における現象を説明することは難しいトランスサイエンスである。

カテゴリー : 一般 高分子

pagetop