活動報告

新着記事

カテゴリー

キーワード検索

2014.09/19 高分子の難燃化技術(3)

 

燃焼時にガラスを生成する難燃化技術は、当時の高分子難燃化技術分野の常識を超えた技術であった。当時まだ三酸化アンチモンとハロゲンの組合わせ難燃剤が注目されていた時代で、この難燃剤システムの問題解決のため各種リン酸エステル系難燃剤の開発競争が行われていた。

 

大八化学はその先端を走っていた会社で、ポリウレタンの事業も行っていたゴム会社には新製品が多数持ち込まれていた。この新製品の評価を幸運にも担当することができ、リン酸エステル系難燃剤の問題点を理解することができた。

 

今でもリン酸エステル系化合物を用いたイントメッセント系の難燃剤開発が行われているが時代遅れのような気がしている。リン系難燃剤の特徴的な難燃化機構は3パターンあり、新しいイントメッセント系難燃剤をリン酸エステル系難燃剤で開発するぐらいならホスファゼンを素直に活用したほうが良い。

 

ホスファゼンは始末書を書くことになった化合物だが、当時先端材料として日本曹達や大塚化学はじめ中堅化学メーカーが積極的に取り組んでいた。ゴム会社で開発されたリチウムイオン電池用難燃剤は日本化学で生産されているが、もしこれらの会社がもう少し早くホスファゼンを事業化していたなら始末書を書くことにはならなかった。

 

ホスファゼンについては大学院修了後、ゴム会社へ就職するまでの半月近く暇だったので趣味的に研究する機会ができた。大学院2年間ご指導してくださった先生のご厚意である。ただ社会人になってからもこの時の成果を論文にするように尻をたたかれたのには困った思い出がある。指導熱心な先生や諸先輩に恵まれたゴム会社の12年間だった。

 

 

 

カテゴリー : 一般 高分子

pagetop

2014.09/18 高分子の難燃化技術(2)

 

ホスファゼン変性軟質ポリウレタンフォームは実用化されなかったのですぐに論文として発表することができた。上司が「高分子の崩壊と安定化研究会」の委員だったので、研究会のネタとして採用されたからだ。

 

論文は英文で投稿したが、今はやりのコピペを用いていない。当時ワープロなど無かったので、直接タイプライターで書かねばならなかった。学生時代に修士論文を書くために買ったタイプライターが役に立った。

 

タイプライターは、片手打ちである。片手に辞書を持ち英文を打ち込んでゆく。五月雨の音よりも遅く、独身寮の廊下に何の音かわからないぐらいの音色で響いていたそうである。

 

ホウ酸エステルとリン酸エステル併用システムは実用化されたので、その外部発表はすぐにできなかった。ただ、5人目の上司が学位取得を勧めてくれて、そこに掲載するために社内調整してくださった。

 

開発してから4年後にようやく論文になったが、こちらは日本語である。日本語ワープロ一太郎を用いて書いた。この研究は日本化学会の年会でも発表したが評判がよく、講演依頼が来るようになった。

 

 

カテゴリー : 一般 高分子

pagetop

2014.09/17 高分子の難燃化技術(1)

 

過去に何度も書いているが、高分子の難燃化技術もゴム会社で学んだスキルである。入社1年後にホスファゼン変性ポリウレタンフォームを半年で試作まで行い、新入社社員でありながら始末書を書くことになった仕事で、始末書を書くにあたり恥ずかしくない内容にしたいと思いこの分野の技術の実情を猛勉強した。

 

市販されていない難燃剤を用いて開発を進めたのが、その始末書を書くことになった原因である。しかし、この始末書のおかげで、燃焼時のエネルギーでガラスを生成し、難燃化する技術を開発することができた。

 

この始末書に反省の証として低コストの難燃化技術を開発する、と書いたのだ。余分なことを書くな、と上司に叱られたが、そもそも新入社員である当方に始末書を書かせる管理職もすごい、という陰の声があったので、ひるまずに始末書をそのまま提出した。

 

この始末書がどのような扱いになったのか知らないが、罰として納期が決められ半年で新しい難燃化システムを開発するようにというありがたい指示が上司から出た。期待に応えて、半年後に試作を成功させ商品化できた。

 

この時完成した新規の難燃化システムはホウ酸エステルとリン酸エステルを組み合わせる難燃化技術である。ホウ酸エステルは市販されていなかったが、ホウ酸とジエタノールアミンとを撹拌するだけで合成できたので、工場の隅に簡単な反応釜を設置するだけで実用化できた。コストは300円/kg以下だったように記憶している。

 

 

カテゴリー : 一般 高分子

pagetop

2014.09/08 防振ゴム(3)否定証明

有機高分子と無機高分子を均一に混合する技術を検討していたので、界面活性剤のキットを常に揃えていた。增粘した電気粘性流体の中にその界面活性剤を一滴ずつ添加した20組以上のサンプルを一昼夜放置しただけで結果が出た。

 

ある界面活性剤を添加したサンプルの粘度が下がっていたのだ。その界面活性剤と類似した構造の活性剤をいくつか取り寄せ検討したところ、增粘を起こさない界面活性剤を見つけることができた。ただしこの界面活性剤は界面活性剤というカテゴリーで販売されていない添加剤であった。

 

しかしこの添加剤の構造には親水性セグメントと親油性セグメントが存在したので界面活性剤と分類してもよい。界面活性剤で增粘を防ぐことができるとプロジェクトリーダーに報告したら頭ごなしに否定された。そして一年間の検討成果を丁寧に説明され、検討してもムダと言われた。

 

もの凄い人だと思った。目の前に問題解決ができている状態のサンプルを見せて説明しているのに、そのサンプルはやがてまた增粘すると理路整然と説明されたのである。状況を担当部長に相談したら、模擬耐久試験をすぐにやろうということになり、担当部長の指導で耐久試験をやることになった。

 

ある構造の界面活性剤が添加された電気粘性流体が3ケ月間の耐久試験でも增粘しないという結果が出てきて技術として使えることをプロジェクトメンバーに認めてもらえた。但し、增粘を防止している添加剤は界面活性剤ではなく第三成分と名付けられた。当方は3ケ月の耐久試験を行わなくても技術的イメージから使えることが分かっていたが周囲の視線を気にしながらも快く耐久試験を行った。

 

技術的に可能性あるシーズを科学的観点から懐疑的に見たり、あるいは科学的論理で否定したりすることが何故起きるのか。これは義務教育時代から学んでいる科学的姿勢が大きく影響していると懸念している。イムレラカトシュはその著書「方法の擁護」の中で科学的に完璧に証明できるのは否定証明だけである、と指摘している。さらに「できない」ということを科学的に証明するのは簡単であるけれど、否定証明された事実と反する実験結果がでてきたなら、真摯に新たな仮説で証明をやり直さなければならない、とも述べている。

 

これは当たり前のことであるが、ものすごく大切な指摘である。これはまた科学のカテゴリーの中で技術を構築することは簡単だが、科学的ではない技術を創り出すことは難しい、とも言っているのと同じである。しかし冷静に考えて頂ければ、科学の無い時代にも技術は生まれ発展してきたのである。科学でサポートされた技術だけで世の中が動いているわけではない。

 

否定証明を得意とする人は知らず知らずのうちに新しいアイデアの芽を摘んでいることに気がついていない。科学を尊重することは大切である。しかし、科学に支配されその奴隷になってしまうと科学で解明されていない新しい技術を生みだすことが難しくなる。この問題については「未来技術研究部( www.miragiken.com )」で少し説明しています。

 

 

 

カテゴリー : 一般 連載 電気/電子材料 高分子

pagetop

2014.09/06 防振ゴム(2)否定証明

自動車のエンジンマウント用防振ゴムには省エネタイヤと同じように二律背反の要求があり、その解決策の事例として樹脂補強ゴムの開発や、電気粘性流体との併用技術の開発体験があることを昨日書いた。

 

電気粘性流体との併用技術では、電気粘性流体へ抽出されるゴムの配合物による增粘が問題になった。この問題では、界面活性剤による解決方法が1年間検討されたが、結局解決できず、解決できない理由を説明した報告書があった。

 

この報告書については見せてもらえなかった。ゴムと電気粘性流体を併用したデバイスで生じる增粘問題を解決するために助っ人としてかり出されたときには、科学的には正しくても商品として成立しない技術の検討をやらされていた。

 

世の中には科学的に正しくても商品として成立しない技術を平気で企画し推進する科学者がいる。このような人に技術開発を担当させると研究成果は出ても新商品は完成しない。研究成果が出るだけでも良い、と考える経営者もいるからびっくりする。このような人は、実は、否定証明も得意で否定証明までも研究成果と考えている。

 

33年間のサラリーマン生活で出会った企業の研究者の何人かはそうであった。商品開発ができない人は、否定証明も好きだ、という事に気がついたのは、技術者生活11年目に担当した電気粘性流体のテーマを担当した、このときだ。プロジェクトにはこのような技術者が3人いた。

 

助っ人を含めた技術者10数名のプロジェクトで3人もこのような人がいると商品はできない。若いプロジェクトリーダーを支えていた担当部長は頭を抱えていた。ゆえにヤミ研実施の相談をしたときにはすぐに賛成してくれた。一度は否定されていた界面活性剤の検討をすぐに行い、1週間で成果を出すことができた。短期間で成果を出すことができたのは、コンビナトリアルケミストリーの手法を使ったからである。

 

 

カテゴリー : 一般 連載 電気/電子材料 高分子

pagetop

2014.09/05 防振ゴム(1)

自動車エンジンの防振ゴム、エンジンマウントも省エネタイヤ同様に二律背反を解決する技術が要求される分野である。すなわち、アイドリング時と高速走行時には防振しなければならない振動の周波数が異なり、前者は15Hz付近の運動モードを、後者は75Hz付近のモードを防止しなければならない。

 

また防振ゴムは硬くなければいけないが、硬いと材料の損失係数は低下する。これも二律背反である。ゴム会社で初めて担当した新入社員のテーマでは樹脂補強ゴム(TPV)でこの問題を解決しようとした。そして実用化に成功した。

 

同じテーマをその10年後電気粘性流体の開発で担当した。こちらは電気デバイスとして動作させて防振するのである。これはチームの一員として材料の耐久性を改善する仕事として取り組んだ。

 

電気粘性流体は電場をかけると固体になる流体で、電気で流体のレオロジーを制御できるデバイスであり当時ゴム会社として重要テーマだった。この流体を防振ゴムに封入すると、ゴムの配合物が流体中に染みだしてきて流体を著しく增粘させる。その結果、電源オフ状態でも固体のようになる現象が耐久試験で起きた。

 

そのプロジェクトでは界面活性剤で問題解決しようと1年ほど努力したらしいが、界面活性剤では問題解決できない、という結論が出された。そこで、ゴムから抽出される成分を解析して、それらの成分をゴムに添加しないでデバイス設計を行う方向で活動していたが、それではゴムが十分な物性を維持できない、ということになり、すなわち電気粘性流体の物性とゴムの物性の両立ができない二律背反の問題ということになり、大騒ぎになった。

 

問題解決のアイデアにつきたときに行う手段は人海戦術である。三人寄れば文殊の知恵ではないが、とにかく人を集めれば何とかなる、ということで研究所で重要テーマを行っていない人間が物色された。ゴム会社で、しかもファイアーストーンを買収しその立て直しをやっている最中に半導体用高純度SiCの開発を担当していたのですぐにお声がかかった。

 

プロジェクトには助っ人として参加させられ、最初は文献や特許すら読ませてもらえなかった。とにかくこの仕事をいついつまでにやれ、という命令だけである。しかし素人目にもそれで問題解決できると思えない仕事ばかりである。完全にプロジェクトリーダーは浮き足立っていた。

 

界面活性剤を問題解決手段として提案したら、過去に界面活性剤を検討してダメだった、という話を聞かされ、余分なことは考えるなとリーダーから言われた。ひょっこりひょうたん島の博士のような人物と思っていたのでびっくりし、相当深刻な状態であることが十二分に伝わった。

 

界面活性剤では提案しても採用されないので、「電気粘性流体の耐久性をあげる第三成分検討」という新テーマを提案した。第三成分などと持って回った言い方をしているが、界面活性剤のことである。ただ、界面活性剤では過去に失敗しており、テーマとして採用されないことが分かっていたから、第三成分と言い換えたのである。

 

発泡体を過去に開発した経験があったので、界面活性剤の技術について体得していた。したがって、たった一週間で問題解決できた。ゴムからの抽出物で電気粘性流体の增粘を防止できる界面活性剤を見つけたのである。これが後ほど会社を辞める原因になったのだが、担当したテーマの二律背反よりも人間関係の二律背反の問題が難しかった。ただ当時に比べればサラリーマン経験も積み、人間関係の問題については二律背反に持ち込まないで解決する知恵もついたが。

 

カテゴリー : 一般 高分子

pagetop

2014.09/04 省エネタイヤ(5)

省エネタイヤではシリカをフィラーとして添加している。シリカの表面にはシラノールが出ているので親水性が高く、WET SKIDは良好となる。しかし、この親水基のためにゴムへの分散が難しくなり、それを容易にするためにカップリング剤を使用する技術が20年以上前に開発された。

 

最近の技術では末端を変性したSBRを用いることでカップリング剤と同様の機能を発揮でき、シリカの分散性があがる。このゴムの末端変性技術が最近省エネタイヤの主流になった。またその研究発表も行われ、先行していた技術を追いかけるように科学の成果も発表されつつある。

 

フィラーがゴムにうまく分散せず、凝集状態となったために生じる現象として、ペイン効果がある。これは、ゴムに歪みをかけたときに歪み量が大きいと弾性率が下がる現象である。一般にフィラーの凝集体が大歪みにより崩れるから、と説明されている。

 

末端を変性したSBRを添加した処方にシリカを用いるとシリカの分散が進むのでペイン効果は見られなくなる。電子顕微鏡観察により、実際にシリカフィラーの分散が向上している様子も発表されている。

 

ところでこれらの現象はどのくらいのサイズの構造で起きているのか、中性子散乱で計測された結果を読むと、シリカの一次粒子サイズが13.6nmでクラスターサイズが65.4nmとある。そして末端変性SBRがフィラーに吸着している厚みは5.3nmだそうだ。

 

これらシリカフィラーの凝集構造の情報はこの20年間の研究成果であり、粗視化MD法でシミュレーションも行われている。このシミュレーションでは、シリカフィラーによりゴムが拘束されてTgが上昇する様子まで計算に成功している。

 

ゴム会社に入社したときには、二律背反の技術開発事例としてカンと経験の世界のような発表を聞いたが、これが科学として裏付けされつつあるのだ。転がり抵抗の低減で省エネを実現するという大変成果が分かりやすい事例である。30年間の長期テーマで現在も科学的研究が行われており、技術が科学を先導した一例だろう。

 

20世紀は科学の時代とも言われたが、科学誕生以前にも技術が存在したように、科学に依存しない技術の進歩が現在でもある。科学が著しく進歩した21世紀になっても人類の本能的営みとしての技術の進歩は続くと思われるが、便利な科学情報に頼りすぎた技術開発の手法ではそれが難しくなってきた。

 

人間の自らの発想力を促す目標仮説の重要性に気づき、ヒューマンプロセスによる問題解決が必要になってきた。www.miragiken.com  ではその一例を探偵物語を例に説明しています。

カテゴリー : 一般 高分子

pagetop

2014.09/03 省エネタイヤ(4)

省燃費用タイヤに使われるSBRは40万t/年になるという。主にトレッド用のゴムの配合に使用されるのだが、この数値だけ見ても省燃費タイヤの普及のすさまじさを知ることができる。ちなみに乗用車用タイヤ1本の重量は概略7kg程度である。すなわちゴムは少なくとも3kg以上は使われているはずなので、配合量を考慮すると数十万台以上の車が省燃費タイヤということになる。

 

さて省エネタイヤは転がり抵抗を低減したタイヤであることは書いたが、これは運動時のゴムのエネルギーロスを少なくすること、すなわちヒステリシスロスあるいは損失係数と呼ばれるtanδを小さくできる材料にすることである。

 

タイヤは路面への食いつきを大きくするとGRIP力が向上するが、この特性とは相反する材料設計が求められる。要するに二律背反の材料設計を求められるわけだが、この解決には、トレドに使われるゴムの運動モードの解析が行われ解決の糸口が見つかった。

 

すなわちタイヤのGRIP力で重要なのは運動の高周波領域における損失係数の向上であり、転がり抵抗の低減では、低周波数領域における損失係数を低減すれば良いことがわかった。ゴムの運動モードと品質特性の関係は省エネタイヤに限らず、防振ゴムやその他ゴム製品で良く出てくるテーマである。古くからゴム会社ではノウハウとして使われてきた。

 

科学的に分かってしまえば簡単だが、40年前は温度時間換算則を使った仮説レベルの内容であった。それは昔は1000Hz以上の高周波数領域のゴム物性など直接測定することができなかったからだ。しかし、ゴム会社の友人に聞いた情報では、10年前実際に装置を開発し高周波数領域の物性を測定し、温度時間換算則の正しさが確認されたのだという。

 

科学では物理学で構築された理論から導かれた現象を説明できる方法が得られると実際にそれを検証したデータが示されて初めて科学的真実となる。ゴムについては、長い間温度時間換算則という仮説段階の理論を使い、高周波数領域の動的物性を推定していた。

 

カテゴリー : 一般 高分子

pagetop

2014.09/02 省エネタイヤ(3)

10年程前からシリカの分散を促進するSBRの特許が多くなっている。原因はこれであった。すなわち、40年前はカップリング剤を用いるのがシリカ分散技術のキーテクノロジーであったのが、現在の省エネ技術ではポリマーの改良でシリカの分散状態を制御するのがトレンドである。

 

すなわちシリカの分散制御という目的は40年前と変わらないが、その手段が新しくなり、ポリマーメーカーがこぞってその技術開発を行っているのだ。ポリマーメーカーによるシリカフィラーの補強構造に関する技術発表も多い。

 

この10年日本化学会年会には出席していたが高分子学会の年会には出ていなかった。高分子自由討論会にでていれば十分な情報が入っていると思っていた。

 

今年の高分子自由討論会でもシリカフィラーの分散を促す変性SBRの技術発表があったが、たかが40年前の技術、と軽く見ていた。しかし、特許を整理してみたところ、目的は40年以上前と変わらないがその達成手段が、カップリング剤から変性ポリマーへ変化していたのだ。

 

技術というものはピンポイントで見ると新しさを感じないことがあるので注意が必要だ。高分子自由討論会における変性ポリマーの発表ではシリカの分散を促進する効果のみ強調していたので、40年前の技術を知っていた当方には新鮮みが感じられなかった。

 

しかし、技術のトレンドとしてその新しさを説明してくれていたらもう少し質問したいことがあったのに、と後悔した。下手に生半可な知識があると情報に対する感度が落ちるので注意が必要である。

 

 

カテゴリー : 一般 高分子

pagetop

2014.09/01 省エネタイヤ(2)

新入社員研修で「二律背反」という言葉をよく聞いた。「技術開発は、二律背反を克服することである」とまで言っていた役員もいた。ちょうど二度のオイルショックでタイヤの省エネ技術がテーマになっていた頃だ。

 

タイヤのゴムのフィラーにはカーボンブラックが使われている。このカーボンブラックだけでは転がり抵抗とWET SKID のバランスをとることができないのだ。WET SKIDを犠牲にせず転がり抵抗を低減できる技術としてシリカフィラーが注目されていた。

 

しかし、シリカの表面は水酸基が存在するのでカーボンブラックのようにポリマーとの親和性が悪くゴムと混練すると凝集して分散する。この問題を解決するために使われたのがシランカップリング剤である。

 

シランカップリング剤でシリカ表面を化学修飾し、ゴムとの親和性を増すとともに、その結果分散性があがる。シランカップリング剤は当初分散性を上げるために使われたが、すぐにゴム分子との反応を考慮した試薬が開発された。

 

ゴム分子との反応を考慮されたシランカップリング剤では、その分子構造に加硫可能な構造があり、その構造でゴム分子と反応し、シリカ表面で反応することでフィラーとしての機能を発揮する。カーボンブラックではこのような面倒な手続きを踏まなくても、表面がゴム分子との反応性に富んでいるのでそのまま使用できる。

 

このようにシランカップリング剤は省エネ技術のために開発されたのでは無く、その前からシリカの分散性を上げる技術としてタイヤには使用されていた。1970年代ホワイトレターというタイヤの飾りが流行したことがあった。タイヤのブランド名を白いゴムで書いたタイヤだ。この時の白いゴムにはシリカフィラーが使われ、そのゴムへの分散を促進するためにシランカップリング剤が使用された。

 

ホワイトレターにシリカフィラーが使用されたが、タイヤのトレッドゴムにそれが使われたのは省エネ技術としてである。現在販売されている省エネタイヤも40年前の技術を使っていると思っていたが、店頭にはシリカフィラーの技術を新たに開発したかのような説明が踊っている。これはおもしろい、温故知新があるかもしれない、と思い少し特許を調べてみた。

カテゴリー : 一般 高分子

pagetop